МАГНИТОТВЕРДЫЕ МАТЕРИАЛЫ




Общие сведения о магнитных сплавах

В зависимости от знака и степени магнитной восприимчивости материалов различают диамагнетики, парамагнетики и ферромагнетики.

Диамагнетики обладают отрицательной магнитной восприимчивостью. Они намагничиваются противоположно приложенному магнитному полю и таким образом ослабляют его. К диамагнетикам относятся полупроводники (Si, Ge), диэлектрики (полимеры), ряд непереходных металлов, таких как Be, Cu, Ag, Pb.

Парамагнетики характеризуются слабой намагниченностью под действием внешнего поля. К парамагнетикам относятся K, Na, Al, a также такие переходные металлы, как Mo, W, Ti.

Ферромагнетики обладают высокой магнитной восприимчивостью. Из всех металлов только четыре — железо, кобальт, никель и гадолиний — обладают высокими ферромагнитными свойствами.

Площадь внутри гистерезисной петли ферромагнетика характеризует энергетические потери на гистерезис или перемагничивание.

Для ферромагнитных материалов основными характеристиками являются остаточная индукция Вr,коэрцитивная сила Hс и магнитная проницаемость μ = В/Н.

Остаточной индукцией, измеряемой в теслах (1 Тл = 104 Гс), называют магнитную индукцию, остающуюся в образце после его намагничивания и снятия магнитного поля. Коэрцитивной силой, измеряемой в А/м, называют напряженность магнитного поля обратного знака, которая должна быть приложена к образцу для его размагничивания. Магнитная проницаемость μ, измеряемая в Генри на метр [1 Г/м = (107/4π) Гс/Э], характеризует интенсивность намагничивания и определяется как тангенс угла наклона к первичной кривой намагничивания В = f (H).

В зависимости от формы гистерезисной кривой и значений основных магнитных характеристик, различают магнитотвердые и магнитомягкие сплавы. Магнитотвердые сплавы (рис.1, а) характеризуются широкой петлей гистерезиса, высоким значением коэрцитивной силы Hc и применяются для изготовления постоянных магнитов. Магнитомягкие сплавы работают в условиях циклически изменяющихся магнитных полей и непрерывного перемагничивания. Они, наоборот, имеют узкую петлю гистерезиса, малые значения Нс и характеризуются небольшими потерями на гистерезис (рис.2, б). Из них изготавливают сердечники трансформаторов, электродвигателей и генераторов, детали слаботочной техники, т. е. такие изделия, которые подвергаются многократному переменному намагничиванию.

Рисунок 1Зависимость магнитной индукции В от напряженности магнитного поля Н:
а) магнитотвердые материалы; б) магнитомягкие материалы;

1 — первичная кривая намагничивания;
2 — гистерезисная кривая намагничивания

 

МАГНИТОТВЕРДЫЕ МАТЕРИАЛЫ

Эта группа материалов должна обладать высокими значениями коэрцитивной силы и остаточной индукции и сохранять высокий уровень этих свойств в течение длительного времени.

Условно к магнитотвердым материалам (высококоэрцитивным) относят материалы Hc ≥ 4 кА/м. Изделия из магнитотвердых материалов работают в магнитной цепи, включающей воздушный зазор и магнитопровод из магнитомягкого материала. Благодаря наличию воздушного зазора образуются свободные магнитные полюса и размагничивающее поле, в котором находится магнитотвердый материал.

Для полной характеристики магнитотвердого материала необходимо знать остаточную индукцию Вr, коэрцитивную силу Нс и величину (BH)max.

Остаточная индукция определяет магнитный поток, создаваемый магнитотвердым материалом в магнитной цепи, коэрцитивная сила — сопротивляемость данного материала воздействию собственного размагничивающего поля и внешних размагничивающих полей, a произведение (BH)max — энергию магнитного поля в материале.

Материалы для постоянных магнитов обычно изготавливают литьем или методами порошковой металлургии.

Для постоянных магнитов применяют высокоуглеродистые стали со структурой мартенсита, содержащие около 1 % С, дополнительно легированные хромом (3 %) — ЕХ3, а также одновременно хромом и кобальтом —·ЕХ5К5, EX9K15M2. Например, сталь ЕХ6К6 содержит 1 % С, 6 % Сr и 6 % Co. Легирующие элементы повышают магнитные характеристики, одновременно улучшая механическую и температурную стабильность постоянных магнитов. Эти стали подвергают нормализации, закалке и низкому отпуску.

Высокие магнитные свойства имеют сплавы на основе Fe—Ni—Al и Fe—Ni—Al—Co с добавкой 2–4 % Cu. Иногда их называют сплавами типа «альнико». В маркировке этих сплавов присутствуют те же буквы, что и в маркировке сталей.

Сплавы этой системы подвергают термомагнитной обработке, которая состоит из нагрева до 1280–1300 °С, выдержки при этой температуре для получения однофазного состояния, быстрого охлаждения до 900 °С с последующим медленным охлаждением в магнитном поле с Hc = 160–280 кА/м. Затем проводится отпуск при 560–630 °С, длительность которого определяется маркой сплава. В процессе охлаждения при 900–650 °С в магнитном поле анизотропные по форме выделившиеся частицы фазы с высоким магнитным насыщением располагаются своей длинной осью в направлении, параллельном вектору напряженности магнитного поля.

Для изготовления небольших и точных по размерам магнитов из сплавов типа «альнико» применяют методы порошковой металлургии. По составу спеченные сплавы близки к литым, они легче обрабатываются, но по магнитным свойствам несколько им уступают.

Очень хорошие, но дорогие магниты изготовляют из сплавов с высоким содержанием кобальта, составляющего 25–50 %. Эти сплавы известны под названием «пермендур» (50 % Fe, 50 % Co), «перминвар» (45 % Ni, 25 % Co, 23 % Fe). Их обычно легируют небольшими добавками Мо, V или Сr. Недавно разработанный сплав гиперко 5-HS содержит 2 % V, 48,5 % Co, остальное — железо.

Сплавы системы Fe—Cr—Co по своим магнитным свойствам близки к сплавам типа «альнико», но обладают более высокими механическими свойствами и деформируются не только в горячем, но и в холодном состоянии. Сплавы подвергают закалке при 950–1000 °С, холодной прокатке и старению при 600 °С.

Высокая коэрцитивная сила в сплавах системы Fe—V—Co (викаллой) возникает в результате γ → α-превращения. Магнитные свойства формируются благодаря холодному деформированию и последующему отпуску. В сплавах этой системы γ → α-превращение происходит при холодном деформировании. Увеличение степени деформирования (обычно не менее 80–90 %) приводит к полному γ → α-превращению и созданию в сплаве кристаллической текстуры. Рост Нс происходит в процессе последующего отпуска в двухфазной α + γ-области вследствие обратного превращения.

Сплавы, содержащие 12 % Co и 10–20 % Mo, называют комол. Эти сплавы деформируются только в горячем состоянии, так как высокое значение коэрцитивной силы достигается в результате распада пересыщенного твердого раствора.

Постоянные магниты по порошковой технологии изготовляют как из хрупких сплавов систем Fe—Ni—Al и Fe—Co—Ni—Al, так и из пластичных сплавов систем Cu—Ni—Co, Fe—Co—Mo и др. Как правило, в качестве исходных материалов используют порошки чистых металлов и лигатур. Порошки смешивают в пропорции, необходимой для получения порошкового сплава заданного состава. Полученную смесь прессуют в виде магнитов нужной формы и проводят высокотемпературное спекание в защитной атмосфере или вакууме.

В настоящее время созданы новые магнитные материалы с применением таких редкоземельных элементов, как неодим и самарий. В России широко осуществляют производство магнитов на основе химического соединения Nd2Fe14B, полученные методом порошковой металлургии с последующим прессованием и спеканием в атмосфере аргона при 1370 °С.

Необходимость расширения области применения магнитотвердых материалов позволила разработать принципиально новые материалы: магнитопласты и магнитоэласты. В них используется смесь резины и пластмассы с размолотым порошком магнитотвердого феррита. Вместо феррита применяют порошки «альнико», соединений РЗМ, например Nd2Fe14B.

Существенное преимущество формообразования магнитов с помощью различных связующих веществ — возможность получения сложных магнитных текстур, например, в многополюсных кольцевых магнитах с количеством полюсов от двух до нескольких десятков.

Магнитомягкие материалы

Магнитомягкие материалы, обладая высокой магнитной проницаемостью, небольшой коэрцитивной силой и малыми потерями на гистерезис, используются в качестве сердечников трансформаторов, электромагнитов, в измерительных приборах и в других случаях, где необходимо при наименьшей затрате энергии достигнуть наибольшей индукции. Для уменьшения потерь на вихревые токи в трансформаторах используют магнитомягкие материалы с повышенным удельным электрическим сопротивлением. Обычно применяются магнитопроводы, собранные из отдельных изолированных друг от друга тонких листов.

СВЕРХПРОВОДИМОСТЬ

С понижением температуры наблюдается монотонное падение электросопротивления. Вблизи абсолютного нуля у многих металлов и сплавов происходит резкое падение электросопротивления, и они становятся сверхпроводниками (рис.2).

Сверхпроводимость — способность материалов не оказывать сопротивление электрическому току при температурах ниже характерной для них критической температуры Т к.

Впервые сверхпроводимость обнаружил в 1911 г. голландский ученый Гейке Камерлинг-Оннес, который наблюдал скачкообразное исчезновение сопротивления ртути до неизмеримо малой величины при температуре 4,2 К (рис.3).

К настоящему времени сверхпроводимость обнаружена у большинства чистых металлов, причем сверхпроводящее состояние легче всего возникает в металлах с низкой обычной проводимостью. Открыто и изучено около трех тысяч сверхпроводящих сплавов и интерметаллических соединений, и их число непрерывно растет. Чистые металлы принято относить к сверхпроводникам первого рода, а сплавы и соединения — к сверхпроводникам второго рода.

Магнитное поле в объеме сверхпроводников при температурах ниже критической равно нулю. Металл становится диамагнетиком — материалом, приобретающим во внешнем магнитном поле магнитный момент, направленный против намагничивающего поля. Поэтому при переходе материала в сверхпроводящее состояние внешнее магнитное поле «выталкивается» из его объема и остается лишь в тонком поверхностном слое толщиной около 10–8 мм. Это явление называется эффектом Мейснера.

Рисунок 2Влияние температуры на электросопротивление сверхпроводящих материалов Рисунок 3 Эффект сверхпроводимости ртути в эксперименте Камерлинг-Онесса (1911 г.)

 

Подтверждением того, что сверхпроводник становится диамагнетиком, является известный эффектный опыт свободного парения постоянного магнита над сверхпроводящей свинцовой пластиной. По преданию гроб с телом пророка Магомета висел в пространстве без всякой поддержки, поэтому этот опыт называют экспериментом с «магометовым гробом».

Перевод материала в сверхпроводящее состояние связан с фазовым переходом. Новое фазовое состояние характеризуется тем, что свободные электроны перестают взаимодействовать с ионами кристаллической решетки и вступают во взаимодействие между собой. Электроны с противоположными спинами объединяются в пары и результирующий спиновый момент становится равным нулю. Электронные пары называют куперовскими по имени Леона Купера, впервые показавшего, что сверхпроводимость в металлах связана с их образованием.

В обычном, неспаренном состоянии электроны рассеиваются на примесях, имеющихся в металле, или на тепловых колебаниях кристаллической решетки — фононах. Рассеивание электронов приводит к возникновению электрического сопротивления. Куперовские пары не рассеиваются, так как энергия фононов, которую пара может получить от взаимодействия с ними или дефектами решетки при криогенных температурах, слишком мала. Не испытывая рассеяния, куперовские пары движутся сквозь решетку кристалла без сопротивления, что и приводит к явлению сверхпроводимости.

Сверхпроводящее состояние может быть разрушено как при нагреве материала до температуры выше критической, так и в результате воздействия сильных внешних магнитных полей с напряженностью Н к более определенного критического значения. Критическое магнитное поле, подобно критической температуре, является основной характеристикой сверхпроводящего материала. При превышении Т к или Н к происходит скачкообразное восстановление электросопротивления, и магнитное поле проникает в металл.

Одним из главных преимуществ сверхпроводников является возможность достижения высоких плотностей тока. Чем выше плотность тока, тем компактнее приборы, меньший расход дорогостоящих сверхпроводящих материалов и меньше масса, которую необходимо охлаждать. Высокая плотность тока позволяет снизить капитальные и эксплуатационные расходы установок на сверхпроводниках.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-04-15 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: