Начальное состояние сети.




Нулевые значения компонент входного вектора X устанавливают сигнал нейрона управления 2 в нуль, одновременно устанавливая в нуль выходы нейронов слоя распознавания. При возникновении ненулевых значений X, оба сигнала управления (G1 и G2) устанавливаются равными единице. При этом по правилу двух третей выходы нейронов слоя сравнения C в точности равны компонентам X.

Вектор C поступает на входы нейронов слоя распознавания, которые в конкурентной борьбе определяют нейрон-победитель, описывающий предполагаемый результат классификации. В итоге выходной вектор R слоя распознавания содержит ровно одну единичную компоненту, остальные значения равны нулю. Ненулевой выход нейрона-победителя устанавливает в нуль сигнал управления 1: G1=0. По обратной связи нейрон-победитель посылает сигналы в слой сравнения, и начинается фаза сравнения.

Фаза сравнения.

В слое сравнения веер сигналов отклика слоя распознавания сравнивается с компонентами вектора X. Выход слоя сравнения C теперь содержит единичные компоненты только в тех позициях, в которых единицы имеются и у входного вектора X и у вектора обратной связи P. Если врезультате сравнения векторов C и X не будет обнаружено значительных отличий, то нейрон сброса остается неактивным. Вектор C вновь вызовет возбуждение того-же нейрона-победителя в слое распознавания, что и удачно завершит процесс классификации. В противном случае будет выработан сигнал сброса, который затормозит нейрон-победитель в слое распознавания, и начнется фаза поиска.

Фаза поиска.

В результате действия тормозящего сигнала сброса все нейроны слоя распознавания получат нулевые выходы, и, следовательно, нейрон управления 1 примет единичное значение активности. Снова выходной сигнал слоя сравнения C установится равным в точности X, как и в начале работы сети. Однако теперь в конкурентной борьбе в слое распознавания предыдущий нейрон-победитель не участвует, и будет найдена новая категория - кандидат. После чего опять повторяется фаза сравнения.

Итерационный процесс поиска завершается двумя возможными способами.

1. Найдется запомненная категория, сходство которой с входным вектором X будет достаточным для успешной классификации. После этого происходит обучающий цикл, в котором модифицируются веса bi и ti векторов B и T возбужденного нейрона, осуществившего классификацию.

2. В процессе поиска все запомненные категории окажутся проверенными, но ни одна из них не дала требуемого сходства. В этом случае входной образ X об'является новым для нейросети, и ему выделяется новый нейрон в слое распознавания. Весовые вектора этого нейрона B и T устанавливаются равными вектору X.

Важно понимать, почему вообще требуется фаза поиска и окончательный результат классификации не возникает с первой попытки. Внимательный читатель вероятно уже обнаружил ответ на это вопрос. Обучение и функционирование сети АРТ происходит одновременно. Нейрон-победитель определяет в пространстве входных векторов ближайший к заданному входному образу вектор памяти, и если бы все черты исходного вектора были критическими, это и было бы верной классификацией. Однако множество критических черт стабилизируется лишь после относительно длительного обучения. На данной фазе обучения лишь некоторые компоненты входного вектора принадлежат актуальному множеству критических черт, поэтому может найтись другой нейрон-классификатор, который на множестве критических черт окажется ближе к исходному образу. Он и определяется в результате поиска.

Отметим, что после относительной стабилизации процесса обучения классификация выполняется без фазы поиска. В этом случае говорят, что формируется прямой доступ к памяти. Возникновение в процессе обучения прямого доступа доказывается в теории АРТ.

Обучение сети АРТ.

В начале функционирования все веса B и T нейронов, а также параметр сходства получают начальные значения. Согласно теории АРТ, эти значения должны удовлетворять условию

где m - число компонент входного вектора X, значение L>1 (например L=2). Такой выбор весов будет приводить к устойчивому обучению. Уровень сходства r выбирается на основе требований решаемой задачи. При высоких значениях этого параметра будет сформировано большое число категорий, к каждой из которых будут относиться только очень похожие вектора. При низком уровне r сеть сформирует небольшое число категорий с высокой степенью обобщения.

Процесс обучения происходит без учителя, на основе самоорганизации. Обучение производится для весов нейрона-победителя в случае как успешной, так и неуспеншной классификации. При этом веса вектора B стремятся к нормализованной величине компонент вектора C:

При этом роль нормализации компонент крайне важна. Вектора с большим число единиц приводят к небольшим значениям весов b, и наоборот. Таким образом, произведение

оказывается масштабированным. Масштабирование приводит к тому, что возможно правильное различение векторов, даже если один является подмножеством другого. Пусть нейрон X1 соответствует образу (100000), а нейрон X2 - образу (111100). Эти образы являются, очевидно, различными. При обучении без нормализации (т.е. bi ® ci) при поступлении в сеть первого образа, он даст одинаковые скалярные произведения, равные 1, как с весами нейрона X1, так и X2. Нейрон X2, в присутствии небольших шумовых отклонений в значениях весов, может выиграть конкуренцию. При этом веса его вектора T устаноятся равными (100000), и образ (111100) будет безвозвратно "забыт" сетью.

При применении нормализации исходные скалярные произведения будут равны единице для нейрона X1, и значению 2/5 для нейрона X2 (при L=2). Тем самым, нейрон X1 заслуженно и легко выиграет конкурентное соревнование.

Компоненты вектора T, как уже говорилось, при обучении устанавливаются равными соответвующим значениям вектора C. Следует подчеркнуть, что это процесс необратим. Если какая-то из компонент tj оказалась равной нулю, то при дальнейшем обучении на фазах сравнения соотвествующая компонента cj никогда не получит подкрепления от tj=0 по правилу 2/3, и, следовательно, единичное значение tj не может быть восстановлено. Обучение, таким образом, сопровождается занулением все большего числа компонент вектора T, оставшиеся ненулевыми компоненты определяют множество критических черт данной категории. Эта особенность проиллюстрирована на Рис. 11.3.

Рис. 11.3. Обучающие образы C и сформированный вектор критических черт T - минимальный набор общих элементов категории.

В оригинальной работе обучение рассматривается в терминах дифференциальных уравне-ний, из которых указанные нами значения получаются в виде предельных.

Остановимся теперь кратко на основных теоремах теории АРТ, характеризующих обучение и функционирование сети. Некоторые из них нами уже упоминались в тексте.

Теоремы АРТ.

1. По достижении стабильного состояния обучения пред'явление одного из обучающих векторов будет сразу приводить к правильной классификации без фазы поиска, на основе прямого доступа.

2. Процесс поиска устойчив.

3. Процесс обучения устойчив. Обучение весов нейрона-победителя не приведет в дальнейшем к переключению на другой нейрон.

4. Процесс обучения конечен. Обученное состояние для заданного набора образов будет достигнуто за конечное число итерации, при этом дальнейшее пред'явление этих образов не вызовет циклических изменений значений весов.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-12-21 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: