Построения шкал для педагогических измерений




Лекция 16. Шкалирование результатов тестирования.

 

1. Задачи шкалирования.

2. Построение шкал.

3. Виды шкал в образовании.

Задачи шкалирования

Для чего и когда следует использовать процедуру шкалирования. Для обоснованного сопоставления результатов учащихся между собой тестовые баллы в соответствии с рядом критериев и норм (число правильно выпаженных заданий при дихотомической оцен­ке результатов выполнения каждого задания, сумма оценок по отдельным заданиям при политомической, или взвешенной, оцен­ке) переводятся в производные показатели при помощи процеду­ры, которая получила название шкалирования.

Таким образом, процесс шкалирования состоит в преобразо­вании сырых баллов в производные показатели, обеспечивающие адекватную интерпретацию и сравнение результатов выполнения педагогических тестов [1; 21; 22; 60].

Современная трактовка процесса шкалирования. Процесс шка­лирования включает в себя различные процедуры. В простейшем случае под шкалированием понимается отображение сырых бал­лов на готовую шкалу, производимое по "определенным прави­лам.

Перевод сырых баллов в производные показатели и их разме­щение на готовой шкале не могут повысить надежность и валидность данных по тесту.

В современной литературе по теории педагогических измере­ний встречается расширенное понимание процедуры шкалирова­ния, в которую включают конструирование шкалы по определен­ным правилам и последующее преобразование исходных эмпири­ческих данных для помещения их на данную шкалу. Таким обра­зом, согласно расширенной трактовке, шкалирование включает ряд последовательных этапов, охватывающих все компоненты пе­дагогических измерений, и имеет связь с качеством результатов.

Построения шкал для педагогических измерений

Этапы Шкалирования. При трактовке процесса шкалирования в расширенном варианте можно выделить четыре основных этапа построения измерительных шкал в образовании для ситуации блан­кового тестирования и обобщенного случая измерений:

Этап 1 — определение цели измерения, выбор конструкта, размерности и содержательной области, адекватно описывающей конструкт.

Этап 2— разработка заданий и экспертное обоснование их качества, экспертное оценивание адекватности содержания зада­ний конструкту, определение первоначальной длины теста.

Этап 3 — апробация, эмпирический анализ качества теста, чистка и коррекция измерителя для повышения надежности и валидности шкалы, проверка размерности пространства измерений или доказательство одномерности теста,

Этап 4 — подтверждение качества шкалы и анализ возможно­сти ее использования для представления результатов учащихся по тесту.

Последний этап начинается с построения устойчивой шкалы, выбранной в соответствии с целями измерения и подходом к со­зданию теста. При последующем использовании теста сырые бал­лы учеников отображаются на готовой шкале, Особую важность на данном этапе имеет процедура выравнивания результатов педаго­гических измерений, полученных учащимися по разным вариан­там теста.

Необходимость выравнивания может быть не совсем понятна педагогу-практику, поскольку е школе принято выдавать суще­ственно различающиеся но трудности варианты контрольных ра­бот, а затем присваивать одинаковые оценочные эквиваленты раз­ным, зачастую несопоставимым, результатам учащихся. В практи­ке педагогических измерений утвердилась другая норма сравне­ния и интерпретации результатов испытуемых, основанная на вы­равнивании, которое представляет собой статистический метод преобразования оценок испытуемых по различным вариантам для обеспечения их сопоставимости.

36.3.ВИДЫШКВАЛ В ОБРАЗОВАНИИ. Виды шкал в образовании

 

Общие цели шкалирования. Процесс шкалирования реализует разные цели в зависимости от подхода, выбранного к разработке теста. При нормативно-ориентированном подходе шкалирован­ные показатели позволяют уточнить место, занимаемое резуль­татом испытуемого относительно норм, или сравнить результа­ты испытуемых, установив место результата каждого учащегося по отношению к результатам остальных учащихся, выполняв­ших этот тест

При критериально-ориентированном подходе шкалированный балл показывает процент освоенного содержания и место результата учащегося в сравнении с критериальным баллом. Перечис­ленным целям отвечают разные шкалы, которые можно постро­ить по результатам выполнения теста.

Шкала перцентильных рангов. Перцентильный (процентильный) ранг для каждого балла определяется процентом испытуемых, которые выполнили столько же или меньше заданий теста. На­пример, если 30 % учащихся выполнили верно по 20 заданий те­ста и получили за каждое из них по одному баллу, то сырой балл «20» соответствует 30-му перцентилю. Таким образом, перцентиль показывает относительное положение испытуемого в выборке уча­щихся, которая выполняла тест. Чем ниже перцентильный ранг результата испытуемого, тем хуже его результаты по сравнению с другими тестируемыми группы.

Перцентили выше 50-го представляют результаты выше сред­него по выборке, а перцентили ниже 50-го — ниже среднего, если в качестве средней нормы выступает медиана, которой соот­ветствует 50-й перцентиль. Для 25-го и 75-го перцентилей суще­ствуют специальные названия: 1-й и 3-й квартили соответственно. Они отсекают нижнюю и верхнюю четверть распределения тесто­вых баллов, поэтому их выделение удобно для сравнения резуль­татов данного тестировании с распределениями результатов по другим тестам.

.. Бели шкала перцентилей построена на выборке стандартиза­ции, то, используя ее, легко определить ранг каждого учащегося, выполнявшего в другое время тот же тест. Для этого достаточно подсчитать его сырой балл и по готовой таблице соответствия найти соответствующий перцентиль. Первичный балл, который ниже любого результата в выборке стандартизации, будет иметь нуле­вой перцентильный ранг. Результат, превышающий любой другой в выборке, получит перцентильный ранг 100. Конечно, оба эти результата не говорят о нулевом или абсолютном результате вы­полнения теста. Перцентили не следует путать с обычными про-< центными показателями, которые при дихотомическом оценива­нии результатов выполнения отдельных заданий представляют собой выраженную в процентах долю правильно выполненных заданий теста. В отличие от обычных процентов перцентиль явля­ется производным показателем, который оценивается в единицах процента испытуемых.

Перцентили имеют несомненные достоинства — они удобны в подсчете и просты в интерпретации. Помимо достоинств перцентильные ранги имеют два существенных недостатка. Во-первых, они являются значениями порядковой шкалы, так как показыва­ют относительное положение каждого индивида в нормативной выборке, а не определяют величину истинного различия между результатами отдельных испытуемых группы. Во-вторых, пер­центили не только не отражают, но даже искажают реальные различия в результатах выполнения теста. Это связано с особеннос­тями распределения перцентилей, имеющего прямоугольный ха­рактер. В этой связи небольшие отклонения от среднего в центре распределения наблюдаемых баллов будут значительно увеличены перцентилями, в то время как относительно большие отклонения на краях кривой нормального распределения будут сжаты.

Стандартные показатели. Z-шкала. При выборе метода шкали­рования часто обращаются к стандартным показателям, указыва­ющим отличие индивидуального результата испытуемого от сред­него балла повыборке в единицах стандартного отклонения. Эти показатели используются для установления места первичного бал­ла каждого испытуемого в сравнении с результатами других на основе подсчета нормированных отклонений и называются z -оценками. Результат отображения z-оценок на числовую ось образует Z-шкалу.

Для перевода в Z-шкалу сырой балл i-го испытуемого преобра­зуется по формуле

где Xi — сырой балл i-го испытуемого; X — среднее значение индивидуальных баллов N испытуемых группы; Sx стандартное отклонение. Поскольку среднее значение X вычитается из каж­дого исходного значения Xi, то новое среднее в Z-шкале — z — будет равно нулю, а стандартное отклонение благодаря нормиро­ванию будет равно единице.

Если величина разности Xi-X, стоящей в числителе дроби, больше 0, то результат i-го испытуемого выше среднего по тесту. В противном случае индивидуальный балл i-го испытуемого ниже среднего. В силу линейного характера преобразований при получе­нии г-оценок все свойства исходного распределения сырых бал­лов переносятся на множество шкалированных баллов.

Использовать Z-шкалу можно для любого распределения ин­дивидуальных баллов. Особенно удобны z -оценки в случае близо­сти распределения первичных баллов к требованиям нормального закона, поскольку можно заранее предсказать процент результа­тов, лежащих в пределах одного и двух стандартных отклонений под кривой нормального распределения. Несомненным достоин­ством Z-шкалы является общая средняя арифметическая и общая мера вариации данных, позволяющие достичь сравнимости ре­зультатов по разным тестам.

Однако помимо явных достоинств есть и недостатки. Отрица­тельные и дробные оценки, которые нередко получаются при вычитаний среднего и деления на стандартное отклонение, мало­пригодны для сообщения результатов тестирования испытуемых группы. Поэтому применяются специальные, методы линейного преобразования z -оценок для перевода их на множество целых положительных чисел.

Шкалы стандартных оценок, полученных на основе линейных преобразований Z - шкалы. Для перевода - оценок в область поло­жительных целых чисел выбираются новые значения среднего арифметического (М)и стандартного отклонения (σ). Они сохраняют все различия между баллами испытуемых, выявленные в Z-шкале, но позволяют избавиться от отрицательных и дробных значений z благодаря умножению каждой z -оценки на одно и то же число, а также прибавлению общей константы и последующему округлению. Для преобразования z-оценок используется формула

z1=M + σz (19)

 

где М — новое среднее арифметическое; σ - новое стандартное отклонение.

 

В качестве значений M и σ в формуле (19) можно использовать любые удобные числа. Например, для шкалы IQ эти значения равны 100 и 15. Поэтому zIQ =100+15z. Другое линейное преобразование c M = 50+10z переводит значения z в стобалльную T-шкалу по формуле Т = 50 + 10z. Эта шкала позволяет избавиться от дроб­ных и отрицательных значений только в том случае, если значе­ния z лежат в интервале от -5 до +5 и имеют один знак после запя­той. В противном случае, если показатели подсчитаны с точнос­тью до сотых, необходимо последующее округление T-показателей, что может привести к снижению дифференцирующего эф­фекта теста.

Для шкалы СЕЕВ по тестам SAT (Scolastic Aptitude Test), разра­ботанным Советом по приемным экзаменам в колледжи, z-оценки пересчитываютcя со средним М = 500 и σ = 100 по формуле z CEEB=500 + 100z. Значению z = -1 будет соответствовать значение z CEEB = 500 + 100 (-1) = 400. A при z = +1 т- z CEEB = 600. Таким образом, в шкале СЕЕВ все дробные z-оценки превращаются в целые и попадают в интервал (0; 1000) в тех случаях, когда Z лежит в интервале (-5; +5). Так же в тысячебалльную шкалу пере­водятся оценки результатов выполнения таких известных в мире тестов, как GRE (Graduate Record Examination) и. др.

Сопоставимость и выравнивание. Поскольку обеспечение сопо­ставимости результатов педагогических измерений является од­ной из главных причин перехода от сырых баллов к производным показателям в процессе шкалирования, то возникает вопрос о возможности сравнения z-оценок, полученных на основе различ­ных вариантов тестя. Ответ на этот вопрос на теоретическом уров­не носит, несомненно, положительный характер в тех случаях, когда сравниваются z-оценки по параллельным вариантам одного и того же теста. Однако на практике из-за неизбежных отклоне­ний от требований параллельности и существования ошибок из­мерения для повышения сопоставимости оценок испытуемых обыч­но используют процедуру выравнивания.

 

 

Рис. 33. Сопоставление шкал

 

В отдельных случаях возникает необходимость сравнения отно­сительного положения испытуемых, полученного в различных шкалах и по различным тестам. Если результаты тестирования имеют нормальное распределение, а выстроенные шкалы основа­ны на идентичных выборках испытуемых, такое сравнение можно провести с помощью рис. 33.

Чтобы добиться сопоставимости результатов тестирования в ситуации отличия распределений баллов от нормального закона, необходимо преобразование, изменяющее вид кривой распреде­ления с целью приближения ее к виду нормальной кривой.

Нормализация данных тестирования. Для нормализации данных тестирования используется нелинейное преобразование, позво­ляющее придать эмпирическому распределению желаемую форму нормальной кривой. С этой целью вводятся нормализованные стандартные показатели, соответствующие распределению, преобра­зованному так, что оно аппроксимируется формой нормальной кривой. Их значения могут быть найдены с помощью таблиц, в которых приводится процент случаев различных отклонений в единицах от среднего значения для нормальной кривой.

Преобразование сырых баллов к нормальному распределению осуществляется способом, получившим название пробшп-преобразования [1; 18]. В рамках процедуры преобразования баллов сначала для каждого сырого показателя определяется кумулированная час­тота, которая представляет собой сумму всех частот, лежащих ниже данного сырого показателя. Затем к ней добавляется половина ко­личества испытуемых, имеющих этот сырой балл. По этим данным вычисляется кумулированная доля путем деления полученной сум­мы на общее число испытуемых выборки. Затем по статистическим таблицам, содержащим значения площади под кривой нормально­го распределения, находят значения нормализованных стандарт­ных Показателей для каждой кумулированной доли |63].

Нормализованный стандартный показатель, как и линейно пре­образованный стандартный показатель, имеет среднее значение «О», а стандартное отклонение — «1». Результат учащегося в «-1» балл можно интерпретировать как превосходящий приблизитель­но 16% результатов группы, а в «+1» балл — как превосходящий 84 % всех результатов.

Шкала станайнов, стенов и другие шкалы. Нормализованным стандартным показателям, так же как и линейно преобразован­ным, стараются придать удобную форму, пригодную для сообще­ния испытуемым. Для этого используют шкалы стандартных деся­ти или девяти единиц. Разбиение нормального распределения на девять интервалов приводит к шкале станайнов, имеющей девять стандартных единиц. Название «станайн» связано с тем, что оцен­ки в этой шкале принимают значения от «1» до «9». При оценке результатов испытуемых по тесту 4 % самых худших результатов присваивается станайн 1, а самых лучших — станайн 9. Следую­щим за худшими и лучшими 7 % результатов присваивают ста-найны 2 и 8 соответственно. Далее 12 % результатов — станайны 3 и 7. Следующим 17% присваивают станайны 4 и б и, наконец, 20% средних результатов — станайн 5 (табл. 16)..

Помимо описанной шкалы станайнов существуют еще две шка­лы, имеющие некоторое, преимущество перед девятибалльной в смысле различающей способности. Одна из них — шкала стандарт­ных десяти единиц, называемая также шкалой Кэтгелла, или шка­лой стенов (sten). Как следует из названия, весь массив результатов делится на десять частей с интервалом 0,5 стандартного отклоне­ния. В шкале стенов среднее арифметическое принимается равным 5,5, а расстояние между двумя соседними стандартными едини­цами равно 0,5 Sx.

 

 

Таблица 16

Таблица соответствия процентов и станайнов

 

Процент   . 7              
Станайн     . 3     .6 .7    

 

Какие шкалы использовать в педагогических измерениях. Многие из шкал, приведенных выше, используются исключительно психо­логами, другие нашли свое применение в образовании. В практике деятельности зарубежных тестовых служб в образований чаще всего обращаются к стобалльной или тысячебалльной шкале, получен­ным на основе преобразования z-оценок. Хотя тысячебалльная шка­ла обладает высокими дифференцирующими возможностями, обычно ее концы оказываются не работающими в силу специаль­ного подбора по трудности заданий теста для приближения час­тотных распределений оценок трудности к виду нормальной кри­вой. Поэтому, как правило, оценки испытуемых распределяются в интервале от 200 до 800 баллов. Но даже использование менее протяженного диапазона оценок, чем тысячебалльная шкала, тре­бует специальных профессиональных навыков по интерпретации баллов учащихся.

Как осмыслить свой результат, если он, например, равен 570 или 650 баллам? Как отнести его к категории плохих или хо­роших результатов на столь широком диапазоне баллов? Другое дело, если результат испытуемого составляет 5 или 6 баллов по девятибалльной шкале. Поэтому к растянутым шкалам обычно обращаются профессиональные тестовые службы для массового тестирования в образовании, когда большое число испытуемых требует повышения дифференцирующей способности шкалы.

В России при шкалировании данных ЕГЭ была выбрана сто­балльная шкала, в которую переводятся оценки выпускников. Ко­нечно, стобалльная шкала — это своего рода компромисс между потребностью в хорошем дифференцирующем эффекте шкалы из-за значительного числа тестируемых во всех регионах и постепен­ным переходом от пятибалльной шкалы, существовавшей на про­тяжении многих лет в России, к более растянутым шкалам.

 



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-30 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: