ABC-модель развития цветка




 

 

Развитие цветка — это процесс, посредством которого цветковые растения запускают каскад экспрессии генов в меристеме, который приводит к образованию органа полового размножения, цветка. Чтобы это произошло, растение должно пройти три стадии развития и сопутствующие им физиологические изменения:

- во-первых, оно должно достичь половой зрелости и стать половозрелой особью (то есть, переход к цветению);

- во-вторых, должно произойти преобразование апикальной меристемы из вегетативной во флоральную меристему (то есть, должна произойти закладка цветка);

- и, наконец, рост и развитие индивидуальных органов цветка.

Для объяснения механизма последней стадии была придумана модель ABC, которая пытается описать биологическую основу процесса с точки зрения молекулярной генетики и биологии развития.

Для запуска процесса цветения необходим внешний стимул, который мог бы запустить дифференцировку меристемы. Этот стимул запускает митотическое деление клеток меристемы, в особенности по бокам, где формируются зачатки цветков. Тот же стимул заставляет меристему включить генетическую программу развития, которая приведёт к росту флоральной меристемы. Главное различие между флоральной и вегетативной меристемами, кроме очевидного несоответствия между образуемыми органам, — это наличие у первой мутовчатого филлотаксиса, суть которого заключается в том, что образуется зародыш, между отдельными мутовками органов которого не происходит удлинения стебля. Эти мутовки претерпевают акропетальное развитие, давая начало чашелистикам, лепесткам, тычинкам и плодолистикам. Ещё одно отличие от вегетативных пазушных меристем — «детерминированность» флоральной меристемы: после дифференцировки её клетки больше не могут делиться[1].

Меристемы цветка можно подразделить на два типа: генеративные меристемы, из которых формируются соцветия, и которые дают начало цветковой меристеме, формирующей органы цветка. Цветковые меристемы дают начало четырём органам цветка: чашелистикам, лепесткам венчика, тычинкам и плодолистикам (пестику). Все органы цветка и соответствующие меристемы закладываются как мутовки, то есть расположены в виде концентрических кругов вокруг цветковой меристемы[2]. То, какой орган будет сформирован из четырёх мутовок цветка, определяется взаимодействием по крайней мере трёх классов генов, а точнее их продуктов, каждый из которых выполняет свою специфическую функцию.

Согласно ABC-модели, функции генов класса A необходимы для закладки мутовок околоцветника, а гены класса C для закладки репродуктивных мутовок. Функции этих генов незаменимы, и отсутствие одной из них будет означать, что другая будет определять идентичность всех флоральных меристем. Функция генов класса B — образование лепестков из чашелистиков во второй мутовке, а также формирование тычинок из плодолистиков в четвёртой мутовке.

Считается, что все органы цветка являются видоизменёнными листьями или выростами стебля. Эту идею впервые высказал И. В. Гёте в XVIII веке. Впервые «цветковая теория» Гёте была опубликована в 1790 году в эссе «Опыт объяснения метаморфоза растений» («Versuch die Metamorphose der Pflanzen zu erklaren»)[3], где Гёте написал:

  Ибо мы можем одинаково хорошо сказать, что тычинка является сжавшимся лепестком, и что лепесток — это тычинка в состоянии расширения; что чашелистик — это сжавшийся, приближающийся к известной степени утончённости стеблевой лист, и что последний — это под напором грубых соков расширившийся чашелистик[4].

Переход к цветению

При переходе к цветению в жизненном цикле растений происходят кардинальные изменения, возможно, даже самые важные из всех. Весь процесс должен пройти без ошибок, чтобы гарантировать растению возможность оставить после себя потомство. Переход начинается с закладки генеративной меристемы, которая даст начало соцветию или одному цветку. Это морфогенетическое изменение состоит из эндогенных и экзогенных элементов. Например, чтобы зацвести, у растения должно быть определённое количество листьев и определённое количество общей биомассы. Также необходимы подходящие внешние условия, такие как длина светового дня и температура. В этом процессе большую роль играют фитогормоны, в особенности гиббереллины, которые могут стимулировать переход к цветению[5].

Существует множество сигналов, которые регулируют зацветание на молекулярно-биологическом уровне. Тем не менее, следует отметить, что основную роль у Arabidopsis thaliana играют следующие три гена:

FLOWERING LOCUS T (FT),

LEAFY (LFY),

SUPPRESOR OF OVEREXPRESSION OF CONSTANS1 (SOC1, также называемый AGAMOUS-LIKE20)[6].

SOC1 кодирует MADS-box-белок, который интегрирует сигналы от других белков, реагирующих на длину светового дня, яровизацию, уровень сахарозы и гиббереллины[5]. SOC1, в свою очередь, активирует ген LEAFY, который кодирует трансфактор и запускает основной каскад генов, ведущий к образованию органов цветка. Продукт гена FT — это небольшой белок с массой 23 кДа, который по отношению к гену SOC1 является активатором более высокого порядка.

Согласно современным представлениям, белок FT — это тот самый таинственный флориген, существование которого постулировал М. Х. Чайлахян. Под влиянием благоприятных условий, таких как качество света, длина светового дня и яровизация, в листьях растения происходит синтез белка FT, который с током соков флоэмы попадает в апикальную меристему, где взаимодействует с постоянно находящимся там белком FD, который представляет собой трансфактор типа цинкового пальца. Вместе эти два белка запускают трансформацию вегетативной меристемы во флоральную и активируют нижележащий ген SOC1.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-30 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: