Потенциал покоя - это разность электрических потенциалов между внутренней и наружной сторонами мембраны, когда клетка находится в состоянии физиологического покоя. Его средняя величина составляет -70 мВ (милливольт).
Сущность
Сущность потенциала покоя - это преобладание на внутренней стороне мембраны отрицательных электрических зарядов в виде анионов и недостаток положительных электрических зарядов в виде катионов, которые сосредотачиваются на её наружной стороне, а не на внутренней.
Поведение мембраны
В поведении мембраны для потенциала покоя важны три процесса:
1) Обмен внутренних ионов натрия на наружные ионы калия. Обменом занимаются специальные транспортные структуры мембраны: ионные насосы-обменники. Таким способом мембрана перенасыщает клетку калием, но обедняет натрием.
2) Открытые калиевые ионные каналы. Через них калий может как заходить в клетку, так и выходить из неё. Он выходит в основном.
3) Закрытые натриевые ионные каналы. Из-за этого натрий, выведенный из клетки насосми-обменниками, не может вернуться в неё обратно. Натриевые каналы открываются только при особых условиях - и тогда потенциал покоя нарушается и смещается в сторону нуля (это называется деполяризацией мембраны, т.е. уменьшением полярности).
Поведение ионов калия и натрия
Ионы калия и натрия по-разному перемещаются через мембрану:
1) Через ионные насосы-обменники натрий насильно выводится из клетки, а калий затаскивается в клетку.
2) Через постоянно открытые калиевые каналы калий выходит из клетки, но может и возвращаться в неё обратно через них же.
3) Натрий "хочет" войти в клетку, но "не может", т.к. каналы для него закрыты.
|
Соотношение химической и электрической силы
По отношению к ионам калия между химической и электрической силой устанавливается равновесие на уровне - 70 мВ.
1) Химическая сила выталкивает калий из клетки, но стремится затянуть в неё натрий.
2) Электрическая сила стремится затянуть в клетку положительно заряженные ионы (как натрий, так и калий).
Формирование потенциала покоя
Попробую рассказать коротко, откуда берётся мембранный потенциал покоя в нервных клетках - нейронах. Ведь, как всем теперь известно, наши клетки только снаружи положительные, а внутри они весьма отрицательные, и в них существует избыток отрицательных частиц - анионов и недостаток положительных частиц - катионов.
И вот тут исследователя и студента поджидает одна из логических ловушек: внутренняя электроотрицательность клетки возникает не из-за появления лишних отрицательных частиц (анионов), а наоборот - из-за потери некоторого количества положительных частиц (катионов).
И поэтому сущность нашего рассказа будет заключаться не в том, что мы объясним, откуда берутся отрицательные частицы в клетке, а в том, что мы объясним, каким образом в нейронах получается дефицит положительно заряженных ионов - катионов.
Куда же деваются из клетки положительно заряженные частицы? Напомню, что это ионы натрия - Na+ и калия - K+.
Натрий-калиевый насос
А всё дело заключается в том, что в мембране нервной клетки постоянно работают насосы-обменники, образованные специальными белками, встроенными в мембрану. Что они делают? Они меняют "собственный" натрий клетки на наружный "чужой" калий. Из-за этого в клетке оказывается в конце концов недостаток натрия, который ушёл на обмен. И в то же время клетка переполняется ионами калия, который в неё натащили эти молекулярные насосы.
|
Итак, результат деятельности мембранных ионных насосов-обменников таков:
Натрий-калиевый ионный насос-обменник создаёт три потенциала (возможности):
Электрический потенциал - возможность затягивать внутрь клетки положительно заряженные частицы (ионы).
Ионный натриевый потенциал - возможность затягивать внутрь клетки ионы натрия (и именно натрия, а не какие-нибудь другие).
Ионный калиевый потенциал - возможновть выталкивать из клетки ионы калия (и именно калия, а не какие-нибудь другие).
1. Дефицит натрия (Na+) в клетке.
2. Избыток калия (K+) в клетке.
Можно сказать так: ионные насосы мембраны создают разность концентраций ионов, или градиент (перепад) концентрации, между внутриклеточной и внеклеточной средой.
Именно из-за получившегося дефицита натрия в клетку теперь "полезет" этот самый натрий снаружи. Так всегда ведут себя вещества: они стремятся выравнять свою концентрацию во всём объёме раствора.
И в то же время в клетке получился избыток ионов калия по сравнению с наружной средой. Потому что насосы мембраны накачали его в клетку. И он стремится уравнять свою концентрацию внутри и снаружи, и поэтому стремится выйти из клетки.
Тут ещё важно понять, что ионы натрия и калия как бы "не замечают" друг друга, они реагируют только "на самих себя". Т.е. натрий реагирует на концентрацию натрия же, но "не обращает внимания" на то, сколько вокруг калия. И наоборот, калий реагирует только на концентрацию калия и "не замечает" натрий. Получается, что для понимания поведения ионов в клетке надо по-отдельности сравнивать концентрации ионов натрия и калия. Т.е. надо отдельно сравнить концентрацию по натрию внутри и снаружи клетки и отдельно - концентрацию калия внутри и снаружи клетки, но не имеет смысла сравнивать натрий с калием, как это часто делается в учебниках.
|
По закону выравнивания концентраций, который действует в растворах, натрий "хочет" снаружи войти в клетку. Но не может, так как мембрана в обычном состоянии плохо его пропускает. Его заходит немножко и клетка его опять тут же обменивает на наружный калий. Поэтому натрий в нейронах всегда в дефиците.
А вот калий как раз может легко выходить из клетки наружу! В клетке его полно, и она его удержать не может. Так вот он и выходит наружу через особые белковые дырочки в мембране (ионные каналы).
18.
19.
20. Потенциал действия клетки. Нейрофизиологический механизм потенциала действия.
ПД- последовательность изменений мембранного потенциала, которая запускается в ответ на воздействие надпороговых стимулах и приводит к возбуждению клетки. Стимуляция нервной клетки достигает порога возбудимости, необходимо для возникновения потенциала действия. Начальное изменение мембранного потенциала приводит к конформационным изменениям белка NA+ -канала, который из состояния покоя переходит в активное состояние, что приводит к проникновению NA+ в клетку по электрохимическому градиенту, что вызывает дальнейшую деполяризацию клетки. ПД развивается по закону «Все или ничего» и реализует свою программу полностью независимо от других изменений в клетке. Поскольку деполяризация в клетке продолжается, открывается больше потенциалзависимых K+ каналов и K+ начинает по электрохимическому градиенту выходить из клетки. В то же время длительная деполяризация вызывает инактивацию NA+ каналов. Благодаря замедлению потока NA+ и выходу положительно заряженных ионов, K+ начинается реполяризация клетки и возвращение мембранного потенциала к исходному уровню. После восстановления исходного уровня мембранного потенциала NA+ и K+ каналы возвращаются в состояние покоя.
21. Восходящие и нисходящие фазы потенциала действия. Реверсии мембранного потенциала.
В нервных волокнах сигналы передаются с помощью потенциалов действия, которые представляют собой быстрые изменения мембранного потенциала, быстро распространяющиеся вдоль мембраны нервного волокна. Каждый потенциал действия начинается со стремительного сдвига потенциала покоя от нормального отрицательного значения до положительной величины, затем он почти так же быстро возвращается к отрицательному потенциалу. При проведении нервного сигнала потенциал действия движется вдоль нервного волокна вплоть до его окончания. На рисунке показаны изменения, возникающие на мембране во время потенциала действия, с переносом положительных зарядов внутрь волокна вначале и возвращением положительных зарядов наружу в конце. В нижней части рисунка графически представлены последовательные изменения мембранного потенциала в течение нескольких 1/10000 сек, иллюстрирующие взрывное начало потенциала действия и почти столь же быстрое восстановление. Стадия покоя. Эта стадия представлена мембранным потенциалом покоя, который предшествует потенциалу действия. Мембрана во время этой стадии поляризована в связи с наличием отрицательного мембранного потенциала, равного -90 мВ. Фаза деполяризации. В это время мембрана внезапно становится высокопроницаемой для ионов натрия, позволяя огромному числу положительно заряженных ионов натрия диффундировать внутрь аксона. Нормальное поляризованное состояние в -90 мВ немедленно нейтрализуется поступающими внутрь положительно заряженными ионами натрия, в результате потенциал стремительно нарастает в положительном направлении. Этот процесс называют деполяризацией, В крупных нервных волокнах значительный избыток входящих внутрь положительных ионов натрия обычно приводит к тому, что мембранный потенциал «проскакивает» за пределы нулевого уровня, становясь слегка положительным. В некоторых более мелких волокнах, как и в большинстве нейронов центральной нервной системы, потенциал достигает нулевого уровня, не «перескакивая» его. Фаза реполяризации. В течение нескольких долей миллисекунды после резкого повышения проницаемости мембраны для ионов натрия, натриевые каналы начинают закрываться, а калиевые — открываться. В результате быстрая диффузия ионов калия наружу восстанавливает нормальный отрицательный мембранный потенциал покоя. Этот процесс называют реполяризацией мембран
По своей амплитуде (100-120 мВ) МПД (Мембранный потенциал действия) на 20-50 мВ превышает величину МПП (Мембранный потенциал покоя). Другими словами, внутренняя сторона мембраны на короткое время становится заряженной положительно по отношению к наружной, — «реверсия заряда.
22. Следовые потенциалы.
Потенциал действия, как правило, сопровождается так называемыми следовыми потенциалами. Они были впервые зарегистрированы Д. С. Воронцовым (1926), а в дальнейшем подробно изучены Дж. Эрлангером и Г. Гассером и др.
Различают отрицательные и положительные следовые потенциалы. Амплитуда, как тех, так и других не превышает нескольких милливольт, а длительность варьирует от нескольких миллисекунд до нескольких десятков или даже сотен миллисекунд. Следовые потенциалы связаны с восстановительными процессами, медленно развивающимися в нервных и мышечных волокнах после окончания возбуждения.
Взаимоотношения между потенциалом действия и следовым отрицательным потенциалом могут быть рассмотрены на примере потенциала действия скелетного мышечного волокна. Фаза реполяризации делится на две неравные по длительности части. Вначале реполяризация мембраны идет быстро, а затем замедляется и приостанавливается. Этому моменту и соответствует начало следового отрицательного потенциала. Мембрана в течение некоторого времени остается частично деполяризованной, лишь примерно через 15 мсек происходит полное восстановление мембранного потенциала до исходной величины - 85 мВ. Следовой отрицательный потенциал часто называют следовой деполяризацией мембраны.
Следовой положительный потенциал выражается в усилении нормальной поляризации - гиперполяризации - мембраны. Он особенно хорошо выражен в безмякотных нервных волокнах. Так, в безмякотном гигантском аксоне кальмара нисходящая фаза потенциала действия непосредственно переходит в положительный следовой потенциал, амплитуда которого достигает примерно 15 мВ, к лишь затем мембранный потенциал возвращается к исходному уровню покоя.
В миелинизированных нервных волокнах следовые изменения потенциала имеют более сложный характер: следовой отрицательный потенциал часто сменяется следовым положительным потенциалом, затем иногда развивается новая электроотрицательность и лишь после этого происходит полное восстановление потенциала покоя.
При ритмическом раздражении нерва следовые потенциалы суммируются, вследствие чего их амплитуда и длительность возрастают.
23. ИО́ННЫЕ КАНА́ЛЫ, крупные белковые молекулы и надмолекулярные структуры липопротеидной природы, встроенные в мембраны клетки и ее органоидов. Обеспечивают избирательное прохождение ионов через мембрану, в том числе из клетки в наружную среду и обратно. Согласно модели, предложенной в 1972 году Синджером и Николсоном, биологические мембраны имеют жидкостно-мозаичное строение: в жидкой фосфолипидной мембранной пленке «плавают» молекулы белков. В частности, молекулы белков, называемые интегральными, пронизывают мембрану насквозь, выступая одним концом в цитоплазму, а другим — в наружную среду клетки. Внутри такой молекулы белка имеется подобие «дырки», или водной поры, через которую и диффундируют ионы.
Трансмембранный транспорт ионов по каналам — основа всех биоэлектрических явлений в организме. Существует большое разнообразие ионных каналов, различающихся по устройству и выполняемым функциям. Численность их может колебаться от нескольких единиц до десятков тысяч на мкм2 мембраны. Простейшими по устройству являются каналы «пассивной утечки» ионов — белковые «дырки» в мембране, пропускающие любые ионы. Они постоянно открыты независимо от действия химических регуляторов или электрического поля. Число таких каналов невелико. Значительно большую и важную группу составляют каналы утечки, избирательно пропускающие один тип ионов (в первую очередь — ионы калия). Избирательный выход калия по концентрационному градиенту из клетки и задержка анионов, не проникающих через мембрану, обусловливает разделение зарядов по разные стороны мембраны и формирование потенциала покоя (см. ПОТЕНЦИАЛ ПОКОЯ) у любой клетки. Наряду с постоянно открытыми ионными каналами утечки, на мембране любой клетки существуют и другие ионные каналы. Большую часть времени они закрыты и открываются лишь на короткое время и только в ответ на действие особого сигнала: известны потенциалоактивируемые (открывающиеся только в ответ на изменения электрического поля на мембране) и хемоактивируемые (открывающиеся только в ответ на действие определенных химических реагентов) каналы. В отличие от каналов утечки, характерных для любой клетки и участвующих в формировании потенциала покоя клеток, потенциалоактивируемые ионные каналы имеются только у возбудимых клеток — нейронов, мышечных клеток и некоторых других. Именно они принимают непосредственное участие в генерации потенциала действия (см. ПОТЕНЦИАЛ ДЕЙСТВИЯ) и возбуждении (см. ВОЗБУЖДЕНИЕ) клетки.
Молекулы потенциалоактивируемых каналов имеют сложное устройство; их важнейшие функциональные компоненты — ионселективный фильтр и воротный механизм канала. Селективные фильтры имеют специальные места сужения и особым образом расположенные заряженные химические группировки внутри канала, что позволяет пропускать только один тип иона. Известны потенциалактивируемые каналы, пропускающие только натрий, только калий либо только кальций. Воротный механизм — это группа атомов в молекуле канала, несущая электрический заряд и способная к локальным смещениям (конформациям) внутри молекулы канала в ответ на действие электрического поля. Перемещающиеся группировки, именуемые «воротными системами», в зависимости от своего местоположения либо перекрывают просвет ионной поры, то есть запирают (инактивируют) канал, либо открывают просвет поры. Причем в канале сосуществуют два «воротных» механизма, действующие в противоположном направлении. В покое, когда канал закрыт, одни «ворота» (активационные) закрыты, а инактивационные — открыты. При действии раздражающего электрического стимула (деполяризации) обе воротные заряженные группировки смещаются в канале почти одновременно, но в противоположном направлении. Поскольку инактивационные ворота смещаются более медленно, канал успевает сначала активироваться (открыться), а затем — инактивироваться (закрыться). Присутствие двух типов «ворот» в составе канала обеспечивает возможность саморегуляции работы канала.
Хемоактивируемый тип ионных каналов открывается и пропускает ионы только после взаимодействия с соответствующими химическими реагентами — гормонами, медиаторами и т. п. (например, ацетилхолином (см. АЦЕТИЛХОЛИН), адреналином (см. АДРЕНАЛИН), гистамином (см. ГИСТАМИН)). Для этого каналы имеют на своей наружной либо внутренней (цитоплазматической) поверхности специальные активные центры.
Еще один тип ионных каналов, обнаруженный в 1980-е годы, — это ионные каналы, чувствительные к растяжению. Они открываются и пропускают ионы в ответ на натяжение мембраны. Встречается у возбудимых и невозбудимых клеток. Отслеживая степень растяжения мышечных органов, такие каналы играют большую роль в поддержании активности клеток сердца, гладкомышечных клеток сосудистой стенки и т. д.
Наряду с каналами пассивного транспорта ионов, существует большой класс каналов активного ионного транспорта, называемых ионными насосами. Ионные насосы переносят ионы через мембрану против их концентрационного градиента, используя энергию, выделяемую при гидролизе АТФ. Молекулы ионных насосов — крупные трансмембранные белки (с молекулярной массой порядка 150000), способные связывать и расщеплять АТФ. Например, натрий-калиевый насос осуществляет сопряженный перенос натрия наружу, а калия — внутрь клетки. За 1 секунду этот насос переносит около 200 ионов Na+ из клетки и 130 ионов К+ в клетку. Широко распространен также и Са2+-насос (кальциевая АТФ-аза), откачивающий избыток ионов кальция из клетки. Системы активного ионного транспорта, обеспечивая постоянство концентраций определенных ионов в клетках, играют чрезвычайно важную роль в поддержании уровня потенциала покоя клетки.
24. Роль АТФ в энергетическом обмене хорошо известна. Однако, кроме того, он является синоптическим передатчиком, широко представленным в различных органах и особенно в эффекторных нейронах метасимпатической нервной системы, где локализуется в пресинаптических терминалях. В связи с тем что при стимуляции этих терминалей выделяются пуриновые продукты распада — аденозин и инозин, эта передача получила название пуринергической.
Считают, что на ранних этапах эволюции АТФ был единственным и общим для всех организмов медиатором. Впоследствии, с усложнением клеточной организации, стали появляться ферментативные системы, синтезирующие новые биологически активные соединения. Последние стали выполнять более узкие медиаторные функции, однако АТФ их также сохранил.
Преобладающим действием АТФ на гладкой мышце является релаксация (от лат. relaxatio — ослабление напряжения), хотя иногда имеет место и возбуждающее действие. Оно может быть прямое и непрямое. Прямое действие способны подавлять некоторые препараты типа хинидина.
Исследования пуринергической передачи на лентах ободочной кишки, мышцах желудка, тонкой и толстой кишки, пищевода, сфинктеров показали, что раздражение пуринергического волокна сопровождается возникновением ТПСП. Ни адреноблокаторы, ни десимпатизация не оказывают на этот ТПСП никакого влияния, однако он полностью блокируется посредством тетродотоксина.
Пуринергические нейроны являются, по—видимому, главной антагонистической тормозной системой по отношению к холинергической возбуждающей системе, например, в механизме кишечной пропульсии (от лат. propello, propulsum — толкать вперед). Они участвуют в «нисходящем» торможении. Сокращения кишки, следующие за возникающим в результате активации пуринергических структур расслаблением, обеспечивают соответствующий механизм для прохождения пищевого комка (болюса) по кишке. Пуринергические нейроны участвуют также в механизме рецептивной релаксации желудка, расслаблении пищевого и анального сфинктеров.
Реакции гладкомышечных органов на АТФ опосредованы его взаимодействием с пуринорецепторами клеточных мембран. На основании фармакологических критериев выделено два их типа. Пуринорецепторы первого типа более чувствительны к продукту распада АТФ — аденозину, второго — к самому АТФ. Возможно, что роль рецептора пуринергической передачи выполняет аденилатциклаза.
25. Пассивный перенос веществ через клеточные мембраны не требует затраты энергии метаболизма. Активный транспорт осуществляется транспортными аденозинтрифосфатазами (АТФазами) и происходит за счет энергии гидролиза АТФ.
Простая диффузия
Диффузия представляет собой процесс, при помощи которого газ или растворенные вещества распространяются и заполняют весь доступный объем.
Молекулы и ионы, растворенные в жидкости, находятся в хаотическом движении, сталкиваясь друг с другом, молекулами растворителя и клеточной мембраной. Столкновение молекулы или иона с мембраной может иметь двоякий исход: молекула либо «отскочит» от мембраны, либо пройдет через нее. Когда вероятность последнего события высока, то говорят, что мембрана проницаема для данноговещества.
Если концентрация вещества по обе стороны мембраны различна, возникает поток частиц, направленный из более концентрированного раствора в разбавленный. Диффузия происходит до тех пор, пока концентрация вещества по обе стороны мембраны не выравнивается. Через клеточную мембрану проходят как хорошо растворимые в воде {гидрофильные) вещества, так и гидрофобные, плохо или совсем в ней нерастворимые.
Гидрофобные, хорошо растворимые в жирах вещества, диффундируют благодаря растворению в липидах мембраны. Вода и вещества хорошо в ней растворимые проникают через временные дефекты углеводородной области мембраны, т.н. кинки, а также через поры, постоянно существующие гидрофильные участки мембраны.
В случае, когда клеточная мембрана непроницаема или плохо проницаема для растворенного вещества, но проницаема для воды, она подвергается действию осмотических сил. При более низкой концентрации вещества в клетке, чем в окружающей среде, клетка сжимается; если концентрация растворенного вещества в клетке выше, вода устремляется внутрь клетки.
Осмос
Осмос — движение молекул воды (растворителя) через мембрану из области меньшей в область большей концентрации растворенного вещества. Осмотическим давлением называется то наименьшее давление, которое необходимо приложить к раствору для того, чтобы предотвратить перетекание растворителя через мембрану в раствор с большей концентрацией вещества.
Молекулы растворителя, как и молекулы любого другого вещества, приводятся в движение силой, возникающей вследствие разности химических потенциалов. Когда какое-либо вещество растворяется, химический потенциал растворителя уменьшается. Поэтому в области, где концентрация растворенного вещества выше, химический потенциал растворителя ниже. Таким образом, молекулы растворителя, перемещаясь из раствора с меньшей в раствор с большей концентрацией, движутся в термодинамическом смысле «вниз», «по градиенту».
Объем клеток в значительной степени регулируется количеством содержащейся в них воды. Клетка никогда не находится в состоянии полного равновесия с окружающей средой. Непрерывное движение молекул и ионов через плазматическую мембрану изменяет концентрацию веществ в клетке и, соответственно, осмотическое
давление ее содержимого. Если клетка секретирует какое-либо вещество, то для поддержания неизменной величины осмотического давления она должна либо выделять соответствующее количество воды, либо поглощать эквивалентное количество иного вещества. Поскольку среда, окружающая большинство клеток гипотонична, для клеток важно предотвратить поступление в них больших количеств воды. Поддержание же постоянства объема даже в изотонической среде требует расхода энергии, поэтому в клетке концентрация веществ неспособных к диффузии (белков, нуклеиновых кислот и т.д.) выше, чем в околоклеточной среде. Кроме того, в клетке постоянно накапливаются метаболиты, что нарушает осмотическое равновесие. Необходимость расходования энергии для поддержания постоянства объема легко доказывается в экспериментах с охлаждением или ингибиторами метаболизма. В таких условиях клетки быстро набухают.
Для решения «осмотической проблемы» клетки используют два способа: они откачивают в интерстиций компоненты своего содержимого или поступающую в них воду. В большинстве случаев клетки используют первую возможность — откачку веществ, чаше ионов, используя для этого натриевый насос (см.ниже).
В целом объем клеток, не имеющих жестких стенок, определяется тремя факторами:
а) количеством содержащихся в них и неспособных к проникновению через мембрану веществ;
б) концентрацией в интерстиций соединений, способных проходить через мембрану;
в) соотношением скоростей проникновения и откачки веществ из клетки.
Большую роль в регуляции водного баланса между клеткой и окружающей средой играет эластичность плазматической мембраны, создающей гидростатическое давление, препятствующее поступлению воды в клетку. При наличии разности гидростатических давлений в двух областях среды вода может фильтроваться через поры барьера, разделяющего эти области.
Явления фильтрации лежат в основе многих физиологических процессов, таких, например, как образование первичной мочи в нефроне, обмен воды между кровью и тканевой жидкостью в капиллярах.
26. 3. Активный транспорт