Половое размножение настолько повсеместно распространено, что даже биологи редко задаются вопросом, почему природа использует этот сложный, хлопотный и рискованный путь. Бесполое размножение так очевидно более просто и более эффективно в передаче генов от предков потомкам! При бесполом размножении (в отличие от полового):
1) каждый индивид оставляет потомство;
2) отсутствуют проблемы, связанные с поиском полового партнера;
3) каждый индивид передает своим потомкам все свои гены (а не половину);
4) однажды созданные и отобранные удачные комбинации генов (оптимальные геномы) не рассыпаются в следующем поколении, а наследуются всеми потомками данной особи.
Высокая цена полового размножения (см. Daly, 1978; Crow, 1988, 1992; Hastings, 1992) была ясно осознана еще Августом Вейсманом (Weismann, 1889). Очевидные преимущества бесполого размножения находятся в контрастном противоречии с хорошо ощущаемой интуитивно биологической важностью пола. В тех или иных формах обмен генетической информацией существует у организмов всех уровней организации, от вирусов до человека, а у млекопитающих, у которых для успешного запуска развития необходимы обе гаметы, мужская и женская (Markert, 1988), способность к бесполому размножению утрачена навсегда. Биологи хорошо знают, какую громадную роль играет репродуктивное поведение в жизни животных, сколько времени и энергии расходуется на него. Может быть, Фрейд и не совсем прав, сводя всю психологию человека к проявлениям полового инстинкта, но в большой мере прав. А ведь всё в конце концов сводится к тому, что при образовании половых продуктов, яйцеклеток и сперматозоидов, встречаются хромосомы отца и матери, обмениваются фрагментами своей ДНК и расходятся в новых комбинациях по разным гаметам. Важность этих обменов должна перевесить все недостатки и трудности полового размножения. Парадоксально, что для инициирования рекомбинации используются потенциально летальные повреждения ДНК, двунитевые разрывы (Paques, Haber, 1999).
|
Долгое время проблема возникновения и поддержания полового размножения почти не привлекала к себе внимания. Дело, по-видимому, представлялось слишком очевидным, и никто не сомневался в высказанной Вейсманом мысли, что половое размножение, создавая генетическое разнообразие, создает тем самым материал для естественного отбора, повышая эволюционный потенциал вида. Возможность ускорения эволюции при амфимиксисе (Амфимиксис — (от греч. amphí — с обеих сторон и míxis — смешение) обычный тип полового процесса, при котором происходит слияние ядер мужской и женской половых клеток) была поддержана и количественно обоснована Фишером и Мюллером (Fisher, 2000; Muller, 1932).
Концепция эволюционного потенциала и сегодня в ходу у популяционных генетиков. При этом подразумевается, что эволюционный потенциал, то есть способность к быстрой и разнообразной эволюции, является положительным признаком, поддерживаемым естественным отбором, а утрата эволюционного потенциала чревата вымиранием. Эта концепция находится в очевидном противоречии с рассмотренными ранее усилиями эволюции по предотвращению генетических изменений, которое надо бы разъяснить. Очевидно, что эволюционный потенциал нельзя отнести к гомеостатическому механизму вида.
|
Эволюционный потенциал популяции или вида есть не что иное, как генотипическое разнообразие особей. В популяциях с большим разнообразием генотипов естественному отбору, в каком бы направлении он ни шел, есть что отбирать. Первичным источником разнообразия являются мутации. Позволительно ли думать, что отбор на эволюционный потенциал вместе с тем есть и отбор более совершенных (быстрых?) механизмов мутагенеза?
В биологии слово «механизм» имеет по меньшей мере два значения. Одно, употребляемое также в химии и физике, обозначает путь, которым идет процесс (этапы, промежуточные продукты). Во втором значении термин «механизм» используется в технике и в молекулярной биологии. Это синоним слова «машина». Когда мы говорим, например, о механизмах мутагенеза, мы имеем в виду первое значение (мы не можем сказать «мутагенная машина»), но когда мы говорим о механизме репликации ДНК, мы как раз имеем в виду репликативную машину. Репликативная машина была создана в ходе эволюции для точной репликации ДНК. Эволюция создала высокосовершенные и энергетически дорогие системы хранения и копирования генетической информации, изумительные молекулярные машины, обеспечивающие предельно низкие скорости мутагенеза. Отбор на высокую скорость мутагенеза представляется нелепостью уже хотя бы потому, что для этого ничего не требуется. Мутагенез без всяких ухищрений и с большой экономией энергии мог бы достигнуть любого высокого уровня. Нет никакой нужды создавать особые механизмы для увеличения ошибок. Мутагенез, будучи энтропийным процессом, есть результат несовершенства систем репликации, репарации, рекомбинации. Эволюция в целом, будучи открытым процессом, разделяет с мутагенезом свойство непреднамеренности, стохастичности и не имеет созданного в ходе эволюции механизма во втором значении этого слова.
|
Еще раз хочу уточнить мою мысль. Эволюция, разумеется, идет, и мы много знаем или предполагаем о том, как она идет, каковы пути образования новых видов. Но мы можем говорить о механизмах эволюции лишь в том же смысле, в каком мы говорим о механизмах мутагенеза. Мы не должны предполагать специальных механизмов ускорения эволюции, созданных в ходе эволюции. Это были бы самоубийственные механизмы. Вид с ускоренной эволюцией существовал бы очень недолго. Все организмы, населяющие Землю сегодня, принадлежат к видам, достаточно устойчивым к дальнейшей эволюции. Эволюция неизбежна в силу того, что создаваемые в ходе эволюции системы защиты от эволюции, видовой гомеостаз, несовершенны и в конце концов преодолеваются давлением энтропии.
Еще одно уточнение. Все виды способны к эволюции просто в силу того, что сами они произошли от эволюционировавших предков и унаследовали это их несовершенство, их «первородный грех». Силой, толкающей вид к изменению, к эволюции, является энтропия. Эволюции трудно избежать. В этом правота Брукса и Вили (Brooks, Wiley, 1986).
Разумеется, альтернатива эволюционировать или вымереть, в обоих случаях ведущая к исчезновению вида, не безразлична для биосферы. Окажись первая живая клетка абсолютно совершенной, способной к бесконечной жизни, совершенно не меняясь, мы бы ничего не имели, кроме этой клетки. Но это вполне очевидное соображение никоим образом не доказывает и не означает, что эволюция может создавать специальные механизмы, ускоряющие эволюцию, хотя не вызывает сомнения, что повышенный эволюционный потенциал может сформироваться как побочный продукт развития других систем и механизмов. Возрастающая в ходе эволюции сложность биологических систем, конечно же, расширяет круг возможных эволюционных новообразований и затрудняет создание совершенного видового гомеостаза. Но она же расширяет возможности создания более совершенной организации, способной противостоять повышенным энтропийным вызовам. Такова диалектика эволюции. При обсуждении диплоидии (Hаличие двух наборов хромосом (гаплоидных геномов) в клетке или у особи) мы видели, что генетический полиморфизм (Под генетическим полиморфизмом понимается состояние длительного разнообразия генотипов, когда частота даже наиболее редко встречающихся генотипов в популяциях превышают 1%) повышает морфогенетический гомеостаз вида. Генетическое разнообразие популяции может быть ценным само по себе, например обеспечивая экологическую пластичность и эффективность внутривидовых взаимодействий; оно может играть критическую роль в обеспечении устойчивой динамики популяции при варьирующих условиях окружающей среды (Haldane, Jayakar, 1963; Северцов, 1990; Robson et al., 1999). Адекватное объяснение смысла полового размножения следует, на мой взгляд, искать в контексте защиты от эволюции.
В последние 30 лет проблема эволюции полового размножения приобрела особую актуальность. В многочисленных работах, по преимуществу теоретических, высказывают разнообразные гипотезы о механизмах происхождения и поддержания полового размножения и генетической рекомбинации (Felsenstein, 1974; Williams, 1975; Майнард Смит, 1981; Kondrashov, 1988, 1993; Hamilton et al., 1990; Hurst, Peck, 1996; Crow 1997; Barton, Charlesworth, 1998; Robson et al., 1999; Bürger, 1999; Серавин, Гудков, 1999; Попадьин, 2003), одни из которых согласуются с тем, что половое размножение является средством ускорения адаптивной эволюции, другие выявляют его консервативную, стабилизирующую роль.
Половое размножение — это настолько мощное приобретение эволюции — достаточно сказать, что здесь практически происходит смена единицы отбора и появление индивида более высокого уровня (Gould, Lloyd, 1999; Michod, 1999), — что его эффекты и последствия могут быть обнаружены при анализе самых разных аспектов жизни. В многочисленных теоретических работах и математических моделях обнаружены как селекционные преимущества, так и недостатки полового размножения в сравнении с бесполым. Результаты немногих экспериментальных работ неоднозначны: более быстрая адаптация у дрозофилы к ДДТ (King, Somme, 1958) и у кишечной палочки к хлорамфениколу (Cavalli, Maccacaro, 1952) в отсутствие рекомбинации; более быстрая эволюция устойчивости к профлавину популяции бактериофага Т4 с высоким уровнем рекомбинации, чем популяции с пониженной рекомбинацией (Malmberg, 1977); замедление реакции на искусственный отбор в популяциях дрозофилы при подавлении рекомбинации (McPhee, Robertson, 1970). В опытах на дрожжах (Zeyl, Bell, 1997) обнаружено, что половое размножение увеличивает среднюю приспособленность в среде, к которой популяции уже адаптированы, но не в среде, к которой еще идет адаптация (довод в пользу важности амфимиксиса для удаления вредных мутаций). Можно ожидать, что на путях верификации моделей, объясняющих, каким образом преимущества полового размножения преодолевают его недостатки, экспериментаторов ждут огромные трудности. В реальном организме механизмы полового размножения, в частности генетическая рекомбинация, интегрированы с другими биологическими и молекулярными механизмами. Хорошим примером является бактериофаг Т4, у которого рекомбинация и репликация ДНК представляют собой единый процесс (Mosig, 1998), так что снижая мутационно скорость рекомбинации, вы уже имеете дело с совсем другим организмом, и изменения его реакции на отбор не поддаются однозначной интерпретации.
Я намерен поддержать ту точку зрения, что половое размножение и рекомбинация выполняют консервативную, антиэволюционную функцию (Bell, 1988; Eshel, 1991), и что именно в этом главное эволюционное преимущество видов, размножающихся половым путем. Я рассматриваю половое размножение как один из механизмов гомеостаза вида. И дело не в том, что модели, демонстрирующие высокую генетическую адаптируемость половых популяций, ошибочны, а в том общем взгляде на адаптируемость и изменчивость как на явления, не определяющие сущность эволюции. Они относятся к средствам эволюции, тогда как онтологическим содержанием эволюции является создание форм, устойчивых к дальнейшей эволюции. Когда в популяционных моделях или в опытах по математическому моделированию оценивают приспособленности и время выживания популяций, то вовсе не интересуются, в какой мере выжившая популяция сохранила самоидентичность и не стала жертвой конформизма. Надо полагать, что те изменения в потоках генов от поколения к поколению, которые изучает популяционная генетика (типа пресловутой смены белых и черных пядениц березовых в зависимости от того, покрыты ли стволы деревьев сажей или не покрыты), относятся к обратимым, независимым от времени процессам. И пока это так, и в той мере, в какой это так, эволюции нет, ибо действительная эволюция, наблюдаемая в геологических масштабах времени, — это цепь необратимых изменений. Именно поэтому мы имеем право сказать, что эволюция — энтропийный процесс (Brooks, Wiley, 1986), и именно поэтому популяционные генетики не интересуются термодинамическими аспектами эволюции. Главное, что привносит с собой половое размножение, это обратимость, что эквивалентно остановке эволюции.
Может ли в таком случае половое размножение повышать адаптируемость популяции? Множество работ отвечает положительно на этот вопрос. Комбинативная изменчивость помогает популяциям благополучно пройти через узкие врата отбора, сохранив свою самоидентичность. Хорошим примером такого рода является преимущество половых популяций в противостоянии паразитам (Hamilton et al., 1990). Но способность к созданию многообразия средств защиты, противостоящая антигенной изменчивости паразита, есть черта, имманентная данному виду, аналогичная фенотипической пластичности, реализуемой, однако, на уровне ДНК. Она не представляет собой действительной эволюции, подобно тому, как образование нового класса антител в результате иммунизации не представляет собой наследственного изменения индивида. Примеры генотипической пластичности организмов многочисленны (Хесин, 1985): транспозоны (Транспозоны (англ. transposable element, transposon) — это участки ДНК организмов, способные к передвижению (транспозиции) и размножению в пределах генома[1]. Транспозоны также известны под названием «прыгающие гены» и являются примерами мобильных генетических элементов.) бактерий, нестабильные локусы (Локус — (от лат. locus — место) хромосомы, линейный участок хромосомы, занимаемый одним геном) и подвижные элементы в геноме грибов, контролирующие элементы растений, мобильные диспергированные гены дрозофилы, амплификация и магнификация генов рибосомной РНК и гистонов (Гисто́ны — обширный класс ядерных белков, выполняющих две основные функции: они участвуют в упаковке нитей ДНК в ядре и в эпигенетической регуляции таких ядерных процессов, как транскрипция, репликация и репарация) и др. Обсуждаемый в данной статье прицельный мутагенез также относится к этому особому случаю генотипической пластичности. Хотя конкретные функции и биологический смысл нестабильности генома во многом неясны, относить всю эту феноменологию к механизмам намеренного ускорения эволюции нет оснований. Скорее наоборот, эта гибкость и пластичность позволяет виду уклониться от необратимых генетических шагов.
Когезия
Переход к половому размножению — это не просто смена способа размножения. Размножение половым путем — это скачок к новому качеству, обозначаемому словом «когезия» (от английского cohesion — сцепление, соединение). Половые популяции — когерентные системы. Когезия — очень сложный феномен и важное понятие, смысл которого можно уяснить при сравнении полового и бесполого размножения.
При бесполом размножении (вегетативное, партеногенез) родитель целиком передает свои гены потомкам. Потомок, следовательно, генетически идентичен своему родителю. Особи одной популяции генами не обмениваются, репродуктивно изолированы. Все потомки одной особи образуют клон генетически идентичных особей. Родословная клона представляет собой древо с одним родоначальником; родословная каждой особи представляет собой одномерную линию предков. Если у особи возникает мутация, она передается всем ее потомкам, но не может быть передана в другие клоны, то есть передача генетического материала только вертикальная. Если популяция состоит из различающихся клонов, она генетически гетерогенна (неоднородный). Конкуренция между особями проста и однозначна: она сводится к конкуренции между клонами. Клоны с селективными преимуществами вытесняют остальных. Такова в общих чертах картина в популяции гаплоидных организмов.
В случае диплоидности (реальная для высших организмов ситуация) есть важный момент образования гетерозигот в результате мутации в одном из наборов генов. Поскольку подавляющее большинство мутаций вредны, а новые мутации чаще всего рецессивны, диплоидность резко снижает уровень экспрессируемых (актуальных) мутаций, поскольку большинство гетерозигот фенотипически мало отличаются от исходных (дикого типа) гомозигот. Этот «антимутагенный» эффект диплоидности может быть огромным. Если принять частоту мутаций на один ген на поколение за 10–5, то вероятность того, что у диплоида будут поражены оба гомологичных гена, составит около 10–10. Под защитой генов дикого типа (Дикий тип — наиболее часто встречающийся в природной популяции фенотип (или совокупность фенотипов); в селекции микроорганизмов — штамм, выделенный непосредственно из природного субстрата. Исходно этот термин использовался для обозначения продукта «нормального» аллеля, в противовес нестандартному продукту «мутантного» аллеля) от поколения к поколению будут накапливаться не проявляющиеся фенотипически (рецессивные) мутации, создавая генотипическую гетерогенность популяции, которая может в каких-то условиях оказаться резервом эволюции. Ясно, однако, что первичная и главнейшая функция диплоидности консервативная: снижение актуальной частоты мутаций. Последующий отбор на совместимость аллелей может окончательно обезвредить мутантный аллель.
Рассмотрим теперь популяцию с половым размножением. Хотя обмен генетическим материалом и рекомбинации имеют место и у гаплоидных организмов, включая бактерий и других прокариот, настоящее половое размножение есть только у эукариот и сопровождается сменой диплоидной и гаплоидной фаз жизненного цикла. В наиболее законченной форме оно существует у позвоночных животных. Гаплоидная фаза у них представлена только половыми клетками — яйцеклетками и сперматозоидами. Жизнь особи начинается со слияния мужской и женской половых (гаплоидных) клеток и образования зиготы, в которой, следовательно, объединены два набора генов разного происхождения — отцовские и материнские. В мейозе (Мейо́з (от др.-греч. μείωσις — уменьшение), или редукционное деление, клетки — деление ядра эукариотической клетки с уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз происходит в половых клетках и связан с образованием гамет. С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной) отцовские и материнские хромосомы расходятся по двум клеткам случайным образом, и, кроме того, в ходе мейоза они обмениваются своей информацией тоже случайным образом. В результате каждая половая клетка получает уникальный комплект генетической информации, наполовину отцовского, а наполовину материнского происхождения. Каждый родитель передает потомку только половину своей генетической информации, выбранную случайным образом. Родословная особи представляет собой дихотомически ветвящееся древо, уходящее в прошлое. Родословные разных особей в популяции переплетены в многомерную сеть. Создается общий генофонд популяции. Индивидуальная особь не может воспроизвести свою генокопию. Возникает надындивидуальное единство — биологический вид. И только в этом случае категория вида имеет особый биологический статус, а не более или менее произвольное собрание морфологически, физиологически и т. п. схожих индивидов. Конкуренция между особями одного вида приобретает совершенно иной характер из-за того, что потомки конкурентов оказываются в конце концов общими. Конкуренция особей сводится к конкуренции генных аллелей, и появляется индивидуальность более высокого ранга — вид; приспособленность организма в той или иной степени жертвуется ради приспособленности вида (Michod, 1999).
Что означает это для эволюции? Если клоны бесполой популяции могут эволюционировать вполне независимо друг от друга, то половая популяция должна эволюционировать как целое. Как сказывается когезия на скорости эволюции? Общей теории, в рамках которой можно было бы ответить на этот вопрос, не существует. Бесполые популяции в конкуренции с половыми имеют двукратное преимущество в силу того, что размножаются все особи, и ряд других очевидных преимуществ. В работах, выполненных за последние 30 лет, представлены многочисленные теоретические модели, показывающие, что половое размножение может обладать преимуществами, превышающими преимущества бесполых популяций, так что победа полового размножения в эволюции уже не выглядит загадочной, однако какие именно особенности полового размножения являются решающими в его возникновении и поддержании, остается предметом дискуссии. Более быстрая эволюция, точнее, более быстрая адаптация? Возможно. И в определенном режиме отбора это продемонстрировано (Barton, Charlesworth, 1998; Bürger, 1999). Но я уже высказывал сомнение в том, что быстрая эволюция имеет долговременные эволюционные преимущества. И интуитивно понятно, что эволюция популяции или вида как целого не может быть быстрой. Новому аллелю, даже и благоприятному в определенных условиях, прежде чем стать эволюционно необратимым событием, необходимо закрепиться, то есть оказаться у 100% особей популяции. Поскольку мутации — вообще редкое событие, а благоприятные — тем более, обладатель редкого нового аллеля спарится с лишенным его партнером, так что у потомков этот полезный аллель окажется в гетерозиготном состоянии, то есть скорее всего не проявится фенотипически. В условиях полового размножения скорость размножения генотипов является квадратичной функцией плотности их в популяции, так что редкие типы не могут размножиться даже при высокой их приспособленности — цена редкости (Michod, 1999).
На мой взгляд, неверно видеть позитивную сторону генетического разнообразия вида в том, что оно служит резервом эволюции. Оно может служить этим резервом, но возникает как способ сопротивления эволюции (Северцов, 1990). Мне представляются важными соображения, высказанные Робсоном с соавторами (Robson et al., 1999) о различении «совокупной неопределенности» (когда успех и неуспех размножения в каждом поколении равно затрагивают всех членов популяции) и «идиосинкразического риска» (когда индивиды независимы в этом отношении). Во втором случае меняющиеся условия жизни благоприятствуют то тем, то другим индивидам, а комбинативная изменчивость каждый раз способствует восстановлению прежнего разнообразия популяции. При этом вид во всём его разнообразии остается устойчивым во времени. Здесь опять природа пытается сохраниться в обход второго закона термодинамики, в обход энтропии: вид сохраняется неизменным при изменчивости составляющих его индивидов. Последствия роста энтропии как бы сбрасываются на более низкий уровень организации. Я думаю, что половое размножение победило потому, что половые популяции более устойчивы к эволюции, чем бесполые, то есть более способны сохранять свою функциональную целостность и конкурентоспособность, несмотря на растущую изменчивость.
Еще одним антиэволюционным проявлением когезии является то, что генотипы «выдающихся» особей, с повышенной конкурентной способностью, не сохраняются в следующем поколении, а рассыпаются и перетасовываются в новые комбинации 3. Рекомбинация разрушает благоприятные генные комбинации более часто, чем создает их (Eshel, 1991).
Эволюционисты, впрочем, хорошо сознают, что свободно скрещивающиеся популяции с большой численностью эволюционно инертны. Хотя, как особые случаи, рассматриваются различные способы симпатрического видообразования (СИМПАТРИЧЕСКОЕ ВИДООБРАЗОВАНИЕвозникновение новых видов в условиях отсутствия географической изоляции; приобретение видами изолирующих механизмов в пределах одной экологические ниши, осуществляемое экологическими или генетическими средствами в пределах данной области. Концепция симпатрическое видообразование разработана Дж. Хаксли (1942)) (например, полиплоидизация, межвидовая гибридизация), главный путь возникновения нового вида требует предварительной репродуктивной изоляции небольшой группы особей (Майр, 1974; Левонтин, 1978; Грант, 1991; Ridlay, 1996). Таким образом, половое размножение и когезия возводят для популяции мощный антиэволюционный барьер. Вид оказывается в потенциальной яме, для преодоления которой требуется особое стечение обстоятельств.
3 Об этом очень сожалеют сторонники евгеники и клонирования человека, но будем надеяться, что вид Homo sapiens окажет им адекватное сопротивление и род человеческий не погибнет, превратившись в Superhomo asexualis.