Нечеткие множества
Пусть E - универсальное множество, x - элемент E, а R - определенное свойство. Обычное (четкое) подмножество A универсального множества E, элементы которого удовлетворяют свойство R, определяется как множество упорядоченной пары A = {mA (х)/х}, где mA(х) - характеристическая функция, принимающая значение 1, когда x удовлетворяет свойство R, и 0 - в другом случае.
Нечеткое подмножество отличается от обычного тем, что для элементов x из E нет однозначного ответа "нет" относительно свойства R. В связи с этим, нечеткое подмножество A универсального множества E определяется как множество упорядоченной пари A = {mA(х)/х}, где mA(х) - характеристическая функция принадлежности (или просто функция принадлежности), принимающая значение в некотором упорядоченном множестве M (например, M = [0,1]).
Функция принадлежности указывает степень (или уровень) принадлежности элемента x к подмножеству A. Множество M называют множеством принадлежностей. Если M = {0,1}, тогда нечеткое подмножество A может рассматриваться как обычное или четкое множество.
Рассмотрим множество X всех чисел от 0 до 10. Определим подмножество A множества X всех действительных чисел от 5 до 8.
A = [5,8]
Покажем функцию принадлежности множества A, эта функция ставит в соответствие число 1 или 0 каждому элементу в X, в зависимости от того, принадлежит данный элемент подмножеству A или нет. Результат представлен на следующем рисунке:
Можно интерпретировать элементы, соответствующие 1, как элементы, находящиеся в множестве A, а элементы, соответствующие 0, как элементы, не находящиеся в множестве A.
Эта концепция используется в многих областях. Но существуют ситуации, в которых данной концепции будет не хватать гибкости.
|
В данном примере опишем множество молодых людей. Формально можно записать так
B = {множество молодых людей}
Поскольку, вообще, возраст начинается с 0, то нижняя граница этого множества должна быть нулем. Верхнюю границу определить сложнее. Сначала установим верхнюю границу, скажем, равную 20 годам. Таким образом, имеем B как четко ограниченный интервал, буквально: B = [0,20]. Возникает вопрос: почему кто-то в свой двадцатилетний юбилей - молодой, а сразу на следующий день уже не молодой? Очевидно, это структурная проблема, и если передвинуть верхнюю границу в другую точку, то можно задать такой же вопрос.
Более естественный путь создания множества B состоит в ослаблении строгого деления на молодых и не молодых. Сделаем это, вынося не только четкие суждения "Да, он принадлежит множеству молодых людей" или "Нет, она не принадлежит множеству молодых людей", но и гибкие формулировки "Да, он принадлежит к довольно молодым людям" или "Нет, он не очень молодой".
Рассмотрим как с помощью нечеткого множества определить выражение "он еще молодой".
В первом примере мы кодировали все элементы множества с помощью 0 ли 1. Простым способом обобщить данную концепцию является введение значений между 0 и 1. Реально можно даже допустить бесконечное число значений между 0 и 1, в единичном интервале I = [0, 1].
Интерпретация чисел при соотношении всех элементов множества становится теперь сложнее. Конечно, число 1 соответствует элементу, принадлежащему множеству B, а 0 означает, что элемент точно не принадлежит множеству B. Все другие значения определяют степень принадлежности к множеству B.
|
Для наглядности приведем характеристическую функцию множества молодых людей, как и в первом примере.
Пусть E = {x1, x2, x3, x4, x5 }, M = [0,1]; A - нечеткое множество, для которого
mA(x1)=0,3; mA(x2)=0; mA(x3)=1; mA(x4)=0,5; mA(x5)=0,9
Тогда A можно представить в виде:
A = {0,3/x1; 0/x2; 1/x3; 0,5/x4; 0,9/x5 } или
A = 0,3/x1 + 0/x2 + 1/x3 + 0,5/x4 + 0,9/x5,
(знак "+" является операцией не сложения, а объединения) или
x1 | x2 | x3 | x4 | x5 | |
A = | 0,3 | 0,5 | 0,9 |
Основные характеристики нечетких множеств
Пусть M = [0,1] и A - нечеткое множество с элементами из универсального множества E и множеством принадлежностей M
· Величина mA(x) называется высотою нечеткого множества A. Нечеткое множество A является нормальным, если его высота равняется 1, то есть верхняя граница ее функции принадлежности равняется 1 ( mA(x)=1). При mA(x)<1 нечеткое множество называется субнормальным.
· Нечеткое множество является пустым, если "xОE m A(x)=0. Непустое субнормальное множество можно нормализировать по формуле mA(x):=
· Нечеткое множество является унимодальным, если mA(x)=1 лишь для одного x из E.
· Носителем нечеткого множества A является обычное подмножество со свойствомmA(x)>0, то есть носитель A = {x/mA(x)>0} " xОE.
· Элементы xОE, для которых mA(x)=0,5 называются точками перехода множества A.