СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О КРОВЕТВОРЕНИИ




РЕФЕРАТ

НА ТЕМУ: ПРЕДСТАВЛЕНИЯ О КРОВЕТВОРЕНИИ, ФУНКЦИИ КЛЕТОК КРОВИ. ОСТРАЯ НЕДОСТАТОЧНОСТЬ КОСТНОГО МОЗГА

 


 

СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О КРОВЕТВОРЕНИИ

 

Кровь является внутренней средой организма с определенным морфологическим составом и многообразными функциями. Условно ее делят на две части: клетки (эритроциты, лейкоциты и тромбоциты) и плазму, в состав которой входят белки, углеводы, жиры, ферменты, гормоны, витамины и другие вещества.

Образование клеток крови происходит в кроветворных органах (красном костном мозге, лимфатических узлах и селезенке).

По истечении срока жизни клетки крови разрушаются в системе мононуклеарных фагоцитов. В физиологических условиях процессы кроветворения и кроворазрушения находятся в строгой координации, регулируемой сложными путями (гуморальным, гормональным, нервным), что обеспечивает постоянство клеточного состава крови. Г. Ф. Ланг ввел понятие о системе крови, включающей периферическую кровь, органы кроветворения и кроворазрушения, а также нейрогуморальный аппарат их регуляции.

В основе современных представлений о кроветворении лежит унитарная теория, основные положения которой разработаны А. А. Максимовым, А. Н. Крюковым и др. Исследования последних лет подтвердили гипотезу А. А. Максимова о существовании единой полипотентной кроветворной стволовой клетки. Решающую роль сыграло использование разработанного Тиллом и Мак-Каллоком (1961) метода клонирования кроветворных клеток в селезенку смертельно облученных животных. После внутривенного введения костномозговых клеток здоровых мышей смертельно облученным в селезенке последних возникают кроветворные колонии эритроидного, гранулоцитарного или мегакариоцитарного типа. При повторной трансплантации клеток одной из этих колоний вновь образуются колонии всех трех типов. Результаты эксперимента указывают на наличие в кроветворных органах элементов, обладающих способностью к самоподдержанию, пролиферации и дифференциации во всех направлениях кроветворения, т. е. имеющих черты, характерные для стволовых кроветворных клеток,

В дальнейшем было установлено существование двух популяций стволовых клеток — пролиферирующего пула и пула, состоящего из клеток, находящихся вне митотического цикла, в стадии покоя (G0). Последняя популяция составляет основную массу (80—90 %) стволовых клеток. Пролиферативная активность и направление дифференциации стволовых клеток осуществляются клетками стромы, создающими их микроокружение. Одним из основных элементов микроокружения являются ретикулярные, эндотелиальные клетки, фибробласты, остеобласты и др. Клетки стромы оказывают индуктивное влияние на стволовые клетки благодаря непосредственному межклеточному взаимодействию и путем выработки коротко-дистантных гуморальных факторов. Все элементы, составляющие кроветворное микроокружение, имеют свою стволовую клетку, способную к самоподдержанию и дифференцировке в любые элементы микроокружения.

Согласно схеме кроветворения, предложенной И. Л. Чертковым и А. И. Воробьевым в 1973 г. и модифицированной в 1981 г. (рис. 56), все кроветворные клетки делятся на шесть классов.

 


 

Первый класс составляют полипотентные клетки-предшественницы, к которым относятся стволовые кроветворные клетки.

Второй класс представлен частично детерминированными полипотентными клетками — общей предшественницей (КОЕ-ГЭММ) трех рядов миелопоэза (эритроидного, гранулоцитарного и мегакариоцитарного) и, пока еще гипотетичной, предшественницей двух клеточных разновидностей лимфопоэза.

Третий класс—класс унипотентных клеток-предшественниц — включает в себя несколько типов клеток. Это — клетки-предшественницы Т- и В-лимфоцитов (пре-Т и пре-В); клетка-предшественница гранулоцитомо-ноцитопоэза (КОЕ-ГМ), способная дифференцироваться в моноциты — макрофаги (ряд КОЕ-М) и в гранулоциты: базофильные (ряд КОЕ-Б), эозинофильные (ацидофильные) (ряд КОЕ-ЭО), нейтрофильные (ряд КОЕ-Г); эритроцитарные клетки предшественницы: гранудоцитарно-эритроцитарная (КОЕ-ГЭ), бурстобразуюшая (БОЕ-Э), подразделяемая на незрелую и зрелую, эритроид-ная колониеобразуюшая единица КОЕ-Э); предшественницы мегакаэиоцитов (КОЕ-МГЦЭ и КОЕ-МГЦ).

Источником образования моноцитов и эозинофильных гранулоцитов, кроме гранулоцитарно-моноцитарной клетки, могут быть самостоятельные клетки-предшественницы, а нейтрофильных гранулоцитов — самостоятельная гранулоцитарная клетка-предшественница (КОЕ-Г) и смешанная гранулоцитарно-эритроцитарная клетка-предшественница (КОЕ-ГЭ).

Предполагается также существование помимо общей гранулоцитарно-моноцитарной клетки-предшественницы самостоятельных предшественниц базофильных гранулоцитов и тучных клеток (тканевых базофилов).

Как видно из представленной схемы, третий класс клеток-предшественниц (поэтинчувствительных клеток) разделен на два подкласса: клеток, способных к дифференцировке в направлении двух ростков, и клеток, дифференцирующихся лишь в одном направлении.

Клетки, входящие в первые три класса, относятся к группе морфологически недифференцируемых, в них не выявлены также и специфические цитохимические признаки.

Четвертый класс составляют морфологически распознаваемые пролиферирующие клетки; пятый — созревающие клетки различных рядов и шестой — зрелые клетки.

Из соответствующих костномозговых предшественниц развиваются две популяции лимфоцитов, неактивных до прохождения через один из органов иммуногенеза — вилочковую железу (тимус) или сумку (bursa) Фабриция у птиц и ее аналоги у млекопитающих (костный мозг и Др.). Т-лимфоциты (тимусзависимые) и В-лимфоциты (тимуснезависимые) являются иммунокомпетентными и поступают в периферические лимфоидкые органы. На дифференциацию Т-лимфоцитов в вилочковой железе оказывают влияние эпителиальное микроокружение и гормоны вилочковой железы.

В результате дифференцированного влияния центральных органов иммунитета Т- и В-лимфоциты приобретают специфические для каждой популяции клеток свойства (маркерные антигены и поверхностные рецепторы), которые и обусловливают специфику их функций.

Так, Т-лимфоциты участвуют в реакциях клеточного иммунитета, осуществляют иммунный надзор за генетическим постоянством организма, а В-лимфоциты ответственны за реакции гуморального иммунитета, способны образовывать антитела. Обе популяции лимфоцитов взаимодействуют друг е другом. Т-лимфоциты. воздействуя на В-лимфоциты, повышают их способность к антителообразованию.

Клетка — предшественница В-лимфоцитов является исходным звеном гистогенеза плазматических клеток.

Как видно из представленной схемы кроветворения, первой морфологически распознаваемой клеткой гранулоцитопоэза является миелобласт, за ним следуют пролиферирующие элементы — промиелоцит и миелоцит, затем созревающие клетки — метамиелоцит и палочкоядерный гранулоцит, заканчивается ряд зрелыми клетками — сегментоядерными гранулоцитами.

Клетки моноцитарного ряда, обладающие способностью к фагоцитозу (в том числе иммунному), пиноцитозу и свойством прочно прилипать к поверхности стекла, объединены в систему мононуклеарных фагоцитов (СМФ).

Элементы этого ряда имеют костно-мозговое происхождение, общего с гранулоцитами предшественника (колониеобразующую клетку КОЕ — ГМ), проходят в своем развитии стадии монобласта, промоноцита и моноцита. Моноциты представляют собой подвижный пул относительно незрелых клеток, которые, попадая с током крови или лимфы в различные органы и ткани, превращаются в макрофаги, способные к фагоцитозу.

В настоящее время в СМФ не включают ретикулярные и эндотелиальные клетки, а также фибробласты, так как они не способны к иммунному фагоцитозу, не являются «профессиональными» фагоцитирующими элементами, фагоцитируют факультативно; кроме того, не доказано их происхождение из монобластов.

Этапы эритроците-, тромбоцитои лимфоцитопоэза — см. рис. 56.

Плазматическая клетка развивается из плазмобласта через стадию проплазмоцита.

 

ФУНКЦИИ КЛЕТОК КРОВИ

Эритроциты помимо основной, дыхательной, функции активно участвуют в регуляции кислотно-основного равновесия организма, адсорбции токсинов и антител, а также в ряде ферментативных процессов.

В сложной регуляции эритроцитопоэза ведущее значение придается гуморальным влияниям, связанным с изменением насыщения крови кислородом. Большую роль в этом процессе играют эритропоэтины, которые воздействуют на стволовые клетки, направляя их дифференциацию в сторону эритроидного ряда. Содержание эритропоэтинов повышается при гипоксии, анемии, особенно при острой кровопотере и гемолизе. Антагонистом эритропоэтина является обнаруженный в крови и моче ингибитор эритропоэза. Взаимодействием эритропоэтина и его ингибитора обеспечивается гомеостаз массы циркулирующих эритроцитов.

В организме человека ежедневно разрушается около 1 % эритроцитов (по истечении срока их жизни, составляющего около 120 дней) и такое же количество их вырабатывается за сутки в костном мозге. Недостающее количество эритроцитов в периферической крови пополняется за счет зрелых эритроцитов и отчасти ретикулоцитов, поступающих из костного мозга, что регулируется вегетативной нервной системой.

Основная функция лейкоцитов — фагоцитарная — осуществляется главным образом нейтрофильными гранулоцитами. Они являются функционально-активными клетками, обладают фагоцитарной способностью, участвуют в процессах регенерации тканей. Способность к самостоятельному движению обеспечивает выход их из сосудистого русла в очаг повреждения тканей. Функциональная активность гранулоцитов связана с наличием в них окислительных ферментов, щелочной фосфатазы и других веществ (гликогена, липидов, белков).

Для эозинофильных (ацидофильных) гранулоцитов характерна дезинтоксикационная функция, особенно антигистаминная. Они принимают активное участие в аллергических реакциях, обычно сопровождающихся образованием значительного количества гистамина.

Функция базофильных гранулоцитов мало изучена. Благодаря значительному содержанию в них гистамина и гепарина они играют определенную роль в аллергических процессах и в антисвертывающей системе крови.

Основная функция моноцитов и других клеток, входящих в СМФ,— фагоцитоз.

Лимфоциты принимают активное участие в осуществлении реакций гуморального (В-лимфоциты) и клеточного (Т-лимфоциты) иммунитета. Большие лимфоциты выполняют также фагоцитарную функцию. Т-лимфоциты отличаются большей продолжительностью жизни, чем В-лимфоциты, и обладают более выраженной способностью к рециркуляции, В зависимости от характера и степени-участия в иммунных реакциях количественные соотношения Т- и В-лимфоцитов в органах и тканях различны: в лимфатических узлах соответственно 65—70 и 30—35 %, в селезенке — 30 и 70 %, в периферической крови — 80 и 20 %.

В настоящее время подтверждены данные о наличии в крови так называемых нулевых лимфоцитов, не содержащих специфических для Т- и В-лимфоцитов маркеров.

Все Т-лимфоциты способны распознавать антиген. По своим функциональным возможностям Т-лимфоциты подразделяются на хелперы, киллеры и супрессоры. Т-хелперы (помощники), не участвуя непосредственно в реакции с антигеном, осуществляют стимуляцию других клеток. Среди них различают хелперы Т-Т — помощники других (эффекторных) Т-лимфоцитов и хелперы Т-В — помощники В-лимфоцитов. Последние дают сигнал В-лимфоцитам к началу дифференцировки. Т-киллеры (убийцы) уничтожают чужеродные клетки, активно прикрепляясь к ним. Т-су-прессоры осуществляют регуляцию иммунного ответа, определяя его объем, своевременность прекращения иммунологической реакции и подавляя ответ на антиген, создают, таким образом, состояние иммунологической толерантности (ареактивности). Дефицит Т-супрессоров приводит к аутоиммунным нарушениям в связи с выходом из-под их контроля некоторых клонов В-лимфоцитов, вырабатывающих аутоантитела.

Плазматические клетки участвуют в иммунных реакциях, являются одним из источников образования антител (иммуноглобулинов).

Продолжительность жизни различных видов лейкоцитов неодинакова. У эозинофильных гранулоцитов она колеблется от нескольких часов до 6—10 дней, у нейтрофильных равна 12—14, у лимфоцитов — приблизительно 100 дням.

Регуляция лейкопоэза очень сложна и до конца еще не изучена. Не выявлен основной фактор, влияющий на пролиферацию и дифференциацию лейкоцитов. Большое значение в этих процессах придается нейрогуморальным факторам, витаминам, гормонам и особенно нуклеиновым кислотам.

В настоящее время доказано существование гуморальных стимуляторов лейкопоэза — лейкопоэтинов и их ингибиторов. Теоретически допускается наличие гуморальных регуляторов для каждого вида лейкоцитов.

Одной из основных физиологических функций тромбоцитов является участие их в процессе свертывания крови. Занимая в сосудах краевое положение, они создают преграду для прохождения эритроцитов через стенку капилляров. При этом большую роль играет так называемая ангиотрофическая функция кровяных пластинок, заключающаяся в их способности поддерживать нормальную структуру и функцию стенок микрососудов путем «подкормки» эндотелиальных клеток. Смыкаясь с эндотелиальными клетками, тромбоциты «изливают» в них свое содержимое. Лишение клеток эндотелия этой «подкормки» вызывает быструю их дистрофию, что приводит к повышению ломкости и проницаемости сосудистой стенки и выходу путем диапедиза эритроцитов за пределы капилляра. В результате образуются мелкие кровоизлияния — петехии.

Как показали электронно-микроскопические исследования, в периферической части тромбоцита (гиаломере) имеется множество волоконец, образующих псевдоподии, которые способствуют прилипанию тромбоцитов к сосудистой стенке и друг к другу, фиксации в сети фибрина и т. д. При нарушении целостности стенки сосудов происходит повреждение и тромбоцитов с выделением тромбопластина, и других гемокоагулирующих факторов, источником которых является центральная часть тромбоцита (грануломер). В результате адгезии и агрегации тромбоцитов образуется первичная тромбоцитарная пробка. Тромбоциты выделяют также серотонин, повышающий сосудистый тонус, ретрактозим, влияющий на ретракцию кровяного сгустка, и ряд пластиночных факторов, участвующих в свертывании крови. Имеются данные об ингибирующем влиянии тромбоцитов на фибринолиз. Кроме того, тромбоциты способны адсорбировать гистамин, они являются также переносчиками антител. Продолжительность жизни тромбоцитов — 8—12 дней.

До последнего времени считали, что кровоточивость возможна только при уменьшении количества тромбоцитов ниже критических цифр — 30— 35 Г/л. Однако нередко, несмотря на резкую тромбоцитопению, геморрагических проявлений нет и наоборот — выраженная кровоточивость возможна на фоне нормального и даже резко повышенного количества тромбоцитов. Механизм развития кровоточивости при тромбоцитопеническом состоянии связан не только с изменением количества тромбоцитов, но и с их функциональной неполноценностью.

Регуляция тромбоцитопоэза осуществляется путем гуморального воздействия стимулирующих (тромбоцитопоэтины) и ингибирующих (тромбоцитопенины) факторов, вырабатываемых селезенкой и находящихся в определенной взаимосвязи. В табл. 21 приведены нормы периферической крови и клеточного состава костного мозга.

 


 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: