Программа обработки звука Audacity
Порой недостаточно просто записать звук, часто возникает необходимость в его редакции: от изменения громкости до сложных эффектов. Существует ряд программ, которые успешно справляются с данной задачей и кроме того имеют возможность извлекать звуковую информацию с компакт-дисков и, наоборот, записывать аудио CD.
Среди таких программ лидируют Sound Forge, Wave Lab, Cool Edit.
Для работы со звуком в общеобразовательной школе можно предложить кроссплатформенный бесплатный аудиоредактор Audacity.
Audacity - бесплатный, простой в использовании звуковой редактор для:
записи звука;
оцифровки аналоговых записей (кассет, грампластинок);
редактирования файлов в форматах Ogg Vorbis, MP3 и WAV;
физического редактирования нескольких файлов (вырезание, склейка, сведение);
изменения скорости и высоты тона записи и многое др.
Цифровая и аналоговая запись. Аналогово-цифровое преобразование. Микширование
Для преобразования дискретизованного сигнала в аналоговый вид, пригодный для обработки аналоговыми устройствами (усилителями и фильтрами) и последующего воспроизведения через акустические системы, служит цифроаналоговый преобразователь (ЦАП). Процесс преобразования представляет собой обратный процесс дискретизации: имея информацию о величине отсчетов (амплитуды сигнала) и беря определенное количество отсчетов в единицу времени, путем интерполирования происходит восстановление исходного сигнала.
Сначала в качестве простейшего звукового устройства в компьютере использовался встроенный динамик (PC speaker). Этот динамик присоединен к порту на материнской плате, у которого есть два положения - 1 и 0. Если этот порт быстро-быстро включать и выключать, то из динамика можно извлечь более-менее правдоподобные звуки. Воспроизведение различных частот достигается за счет того, что диффузор динамика обладает конечной реакцией и не способен мгновенно перескакивать с места на место, таким образом, он "плавно раскачивается" вследствие скачкообразного изменения напряжения на нем. И если колебать его с разной скоростью, то можно получить колебания воздуха на разных частотах. Естественной альтернативой динамику стал так называемый Covox - это простейший ЦАП, выполненный на нескольких подобранных сопротивлениях (или готовой микросхеме), которые обеспечивают перевод цифрового представления сигнала в аналоговый - то есть в реальные значения амплитуды. Covox прост в изготовлении и поэтому он пользовался успехом у любителей вплоть до того времени, когда звуковая карта стала доступной всем.
|
В современном компьютере звук воспроизводится и записывается с помощью звуковой карты - подключаемой, либо встроенной в материнскую плату компьютера. Задача звуковой карты в компьютере - ввод и вывод аудио. Практически это означает, что звуковая карта является тем преобразователем, который переводит аналоговый звук в цифровой и обратно. Если описывать упрощенно, то работа звуковой карты может быть пояснена следующим образом. Предположим, что на вход звуковой карты подан аналоговый сигнал и карта включена (программно). Сначала входной аналоговый сигнал попадает в аналоговый микшер, который занимается смешением сигналов и регулировкой громкости и баланса. Микшер необходим, в частности, для предоставления возможности пользователю управлять уровнями. Затем отрегулированный и сбалансированный сигнал попадает в аналогово-цифровой преобразователь, где сигнал дискретизуется и квантуется, в результате чего в компьютер по шине данных направляется бит-поток, который и представляет собой оцифрованный аудио сигнал. Вывод аудио информации почти аналогичен вводу, только происходит в обратную сторону. Поток данных, направленный в звуковую карту, преодолевает цифро-аналоговый преобразователь, который образует из чисел, описывающих амплитуду сигнала, электрический сигнал; полученный аналоговый сигнал может быть пропущен через любые аналоговые тракты для дальнейших преобразований, в том числе и для воспроизведения. Надо отметить, что если звуковая карта оборудована интерфейсом для обмена цифровыми данными, то при работе с цифровым аудио никакие аналоговые блоки карты не задействуются.
|
Импульсная и частотная модуляция. Хранение оцифрованного звука
Для хранения цифрового звука существует много различных способов. Во-первых, блок оцифрованной аудио информации можно записать в файл "как есть", то есть последовательностью чисел (значений амплитуды). В этом случае существуют два способа хранения информации.
Первый - PCM (Pulse Code Modulation - импульсно-кодовая модуляция) - способ цифрового кодирования сигнала при помощи записи абсолютных значений амплитуд (бывают знаковое или беззнаковое представления). Именно в таком виде записаны данные на всех аудио CD.
|
Второй способ - ADPCM (Adaptive Delta PCM - адаптивная относительная импульсно-кодовая модуляция) - запись значений сигнала не в абсолютных, а в относительных изменениях амплитуд (приращениях).
Во-вторых, можно сжать или упростить данные так, чтобы они занимали меньший объем памяти, нежели будучи записанными "как есть". Тут тоже имеются два пути.
Кодирование данных без потерь (lossless coding) - это способ кодирования аудио, который позволяет осуществлять стопроцентное восстановление данных из сжатого потока. К такому способу уплотнения данных прибегают в тех случаях, когда сохранение оригинального качества данных критично. Существующие сегодня алгоритмы кодирования без потерь (например, Monkeys Audio) позволяют сократить занимаемый данными объем на 20-50%, но при этом обеспечить стопроцентное восстановление оригинальных данных из полученных после сжатия. Подобные кодеры - это своего рода архиваторы данных (как ZIP, RAR и другие), только предназначенные для сжатия именно аудио.
Имеется и второй путь кодирования - кодирование данных с потерями (lossy coding). Цель такого кодирования - любыми способами добиться схожести звучания восстановленного сигнала с оригиналом при как можно меньшем объеме упакованных данных. Это достигается путем использования различных алгоритмов "упрощающих" оригинальный сигнал (выкидывая из него "ненужные" слабослышимые детали), что приводит к тому, что декодированный сигнал фактически перестает быть идентичным оригиналу, а лишь похоже звучит. Методов сжатия, а также программ, реализующих эти методы, существует много. Наиболее известными являются MPEG-1 Layer I, II, III (последним является всем известный MP3), MPEG-2 AAC (advanced audio coding), Ogg Vorbis, Windows Media Audio (WMA), TwinVQ (VQF), MPEGPlus, TAC, и прочие. В среднем, коэффициент сжатия, обеспечиваемый такими кодерами, находится в пределах 10-14 (раз). Надо особо подчеркнуть, что в основе всех lossy-кодеров лежит использование так называемой психоакустической модели, которая как раз и занимается "упрощением" оригинального сигнала. Говоря точнее, механизм подобных кодеров выполняет анализ кодируемого сигнала, в процессе которого определяются участки сигнала, в определенных частотных областях которых имеются неслышные человеческому уху нюансы (замаскированные или неслышимые частоты), после чего происходит их удаление из оригинального сигнала. Таким образом, степень сжатия оригинального сигнала зависит от степени его "упрощения"; сильное сжатие достигается путем "агрессивного упрощения" (когда кодер "считает" ненужными множественные нюансы), такое сжатие, естественно, приводит к сильной деградации качества, поскольку удалению могут подлежать не только незаметные, но и значимые детали звучания. Говоря о способах хранения звука в цифровом виде нельзя не вспомнить и о носителях данных. Всем привычный аудио компакт-диск, появившийся в начале 80-х годов, широкое распространение получил именно в последние годы (что связано с сильным удешевлением носителя и приводов). А до этого носителями цифровых данных являлись кассеты с магнитной лентой, но не обычные, а специально предназначенные для так называемых DAT-магнитофонов. Эти магнитофоны использовались, в основном, в студиях звукозаписи. Преимущество таких магнитофонов было в том, что, не смотря на использование привычных носителей, данные на них хранились в цифровом виде и практически никаких потерь при чтении/записи на них не было (что очень важно при студийной обработке и хранении звука). Сегодня появилось большое количество различных носителей данных, кроме привычных всем компакт дисков. Носители совершенствуются и с каждым годом становятся более доступными и компактными. Это открывает большие возможности в области создания мобильных аудио проигрывателей.