Оглавление.
1. Введение
2. Приборы радиационной разведки
3. Приборы химической разведки
4. Современное развитие
5. Выводы
6. Литература
Введение.
Современные средства несанкционированного добывания информации (технические средства разведки) используют для достижения своих целей все технологические возможности. Для этого формируются каналы утечки информации за счёт перехвата сигналов, переносимых физическими полями, которые сознательно или непреднамеренно формируются техническими системами и сопровождают их функционирование.
Для несанкционированного доступа к информации, а следовательно и для ее защиты, весьма важно изучение и использование физических полей: акустическое, электрическое, магнитное, электромагнитное поля.
Едва ли не самым важным для работы современных информационных систем видом полей, детально освоенным физикой и изученным техникой, является электромагнитное поле.
Одним из основных средств получения разведывательной информации является техническая разведка. Защита от технических средств разведки является неотъемлемой и составной частью производственной деятельности предприятий, учреждения и организаций оборонной промышленности, а также обеспечения боевой деятельности войск и сих флота.
Существует много разновидностей технической разведки. В данной работе были рассмотрены следующие виды технической разведки:
1. Радиационная разведка — процесс получения информации в результате приема и анализа радиоактивных излучений;
2. Химическая разведка — добывание информации путем контактного или дистанционного анализа изменений химического состава окружающей среды.
|
Что такое химическое оружие?
Химическое оружие (ХО) – один из видов оружия массового поражения, поражающее действие которого основано на использовании боевых токсических химических веществ (БТХВ).
К боевым токсическим химическим веществам относятся отравляющие вещества и токсины, оказывающие поражающее действие на организм человека и животных, а также фитотоксиканты, которые могут применяться в военных целях для уничтожения различных видов растительности.
Отравляющие вещества (ОВ) – это химические соединения, обладающие определенными токсическими и физико – химическими свойствами, обеспечивающими при их боевом применении поражение живой силы (людей), а также заражение воздуха, одежды, техники и местности.
Отравляющие вещества составляют основу химического оружия. Ими снаряжаются снаряды, мины, боевые части ракет, авиационные бомбы, выливные авиационные приборы, дымовые шашки, гранаты и другие химические боеприпасы и приборы.
ОВ поражают организм, проникая через органы дыхания, кожные покровы и раны. Кроме того, поражения могут наступать в результате употребления зараженных продуктов и воды.
Современные отравляющие вещества классифицируются:
· По физиологическому действию на организм;
· По токсичности (тяжести поражения);
· По быстродействию;
· По стойкости.
Приборы радиационной разведки
Дозиметрические приборы предназначены для определения уровней радиации на местности, степени заражения одежды, кожных покровов человека, продуктов питания, воды, фуража, транспорта и других различных предметов и объектов, а также для измерения доз радиоактивного облучения людей при их нахождении на объектах и участках, зараженных радиоактивными веществами.
|
В соответствии с назначением дозиметрические приборы можно подразделить на приборы: радиационной разведки местности, для контроля степени заражения и для контроля облучения.
В группу приборов для радиационной разведки местности входят индикаторы радиоактивности и рентгенометры; в группу приборов для контроля степени заражения входят радиометры, а в группу приборов для контроля облучения - дозиметры.
Виды ионизирующих излучений
Альфа-излучение представляет собой поток ядер атомов гелия, называемых альфа-частицами и обладающих высокой ионизирующей способностью. Однако проникающая способность их очень низка. Длина пробега альфа-частицы в воздухе составляет всего несколько сантиметров (не более 10 см), а в твердых и жидких веществах еще меньше. Обыкновенная одежда и средства индивидуальной защиты полностью задерживают альфа-частицы и обеспечивают защиту человека. Альфачастицы крайне опасны при попадании в организм, что может привести к внутреннему облучению.
Бета-излучение - это поток быстрых электронов, называемых бета-частицами, возникающими при бета-распаде радиоактивных веществ. Бета-излучение имеет меньшую ионизирующую способность, чем альфа-излучение, но большую проникающую способность. Одежда уже не может полностью защитить, нужно использовать любое укрытие. Это будет намного надежнее.
Гамма-излучение имеет внутриядерное происхождение и представляет собой электромагнитное излучение, распространяющееся со скоростью света. Оно обладает очень высокой проникающей способностью и может проникать через толщу различных материалов. Гамма-излучение представляет основную опасность для жизни людей, ионизируя клетки организма. Защиту от него могут обеспечить только убежища, противорадиационные укрытия, надежные подвалы и погреба.
|
Нейтроны образуются в зоне ядерного взрыва в результате цепной реакции деления тяжелых ядер урана-235 или плутония-239 и являются электрически нейтральными частицами. Под воздействием нейтронов находящиеся в почве атомы кремния, натрия, магния и др. становятся радиоактивными (наведенная радиация) и начинают излучать бета- и гамма-лучи.
Принцип обнаружения ионизирующих (радиоактивных) излучений (нейтронов, гамма-лучей, бета- и альфа-частиц) основан на способности этих излучений ионизировать вещество среды, в которой они распространяются. Ионизация, в свою очередь, является причиной физических и химических изменений в веществе, которые могут быть обнаружены и измерены. К таким изменениям среды относятся: изменения электропроводности веществ (газов, жидкостей, твердых материалов); люминесценция (свечение) некоторых веществ; засвечивание фотопленок; изменение цвета, окраски, прозрачности, сопротивления электрическому току некоторых химических растворов и др.
Для обнаружения и измерения ионизирующих излучений используют следующие методы: фотографический, сцинтилляционный, химический и ионизационный.
Фотографический метод основан на степени почернения фотоэмульсии. Под воздействием ионизирующих излучений молекулы бромистого серебра, содержащегося в фотоэмульсии, распадаются на серебро и бром. При этом образуются мельчайшие кристаллики серебра, которые и вызывают почернение фотопленки при ее проявлении. Плотность почернения пропорциональна поглощенной энергии излучения. Сравнивая плотность почернения с эталоном, определяют дозу излучения (экспозиционную или поглощенную), полученную пленкой. На этом принципе основаны индивидуальные фотодозиметры.
Сциптилляционный метод. Некоторые вещества (сернистый цинк, йодистый натрий) под воздействием ионизирующих излучений светятся. Количество
вспышек пропорционально мощности дозы излучения и регистрируется с помощью специальных приборов — фотоэлектронных умножителей.
Химический метод. Некоторые химические вещества под воздействием ионизирующих излучений меняют свою структуру. Так, хлороформ в воде при облучении разлагается с образованием соляной кислоты, которая дает цветную реакцию с красителем, добавленным к хлороформу. Двухвалентное железо в кислой среде окисляется в трехвалентное под воздействием свободных радикалов НО2 и ОН, образующихся в воде при ее облучении. Трехвалентное железо с красителем дает цветную реакцию. По плотности окраски судят о дозе излучения (поглощенной энергии). На этом принципе основаны химические дозиметры ДП-70 и ДП-70М.
В современных дозиметрических приборах широкое распространение получил ионизационный метод обнаружения и измерения ионизирующих излучений.
Ионизационный метод. Под воздействием излучений в изолированном объеме происходит ионизация газа: электрически нейтральные атомы (молекулы) газа разделяются на положительные и отрицательные ионы. Если в этот объем поместить два электрода, к которым приложено постоянное напряжение, то между электродами создается электрическое поле. При наличии электрического поля в ионизированном газе возникает направленное движение заряженных частиц, т.е. через газ проходит электрический ток, называемый ионизационным. Измеряя ионизационный ток, можно судить об интенсивности ионизирующих излучений.
Приборы, работающие на основе ионизационного метода, имеют принципиально одинаковое устройство и включают: воспринимающее устройство (ионизационную камеру или газоразрядный счетчик), усилитель ионизационного тока, регистрирующее устройство(микроамперметр) и источник питания.
Ионизационная камера представляет собой заполненный воздухом замкнутый объем, внутри которого находятся два изолированных друг от друга электрода (типа конденсатора). К электродам камеры приложено напряжение от источника постоянного тока. При отсутствии ионизирующего излучения в цепи ионизационной камеры тока не будет, поскольку воздух является изолятором. При воздействии же излучений в ионизационной камере молекулы воздуха ионизируются. В электрическом поле положительно заряженные частицы перемещаются к катоду, а отрицательные — к аноду. В цепи камеры возникает ионизационный ток, который регистрируется микроамперметром. Числовое значение ионизационного тока пропорционально мощности излучения. Следовательно, по ионизационному току можно судить о мощности дозы излучений, воздействующих на камеру. Ионизационная камера работает в области насыщения.
Газоразрядный счетчик используется для измерения радиоактивных излучений малой интенсивности. Высокая чувствительность счетчика позволяет измерять интенсивность излучения в десятки тысяч раз меньше той, которую удается измерить ионизационной камерой.
Газоразрядный счетчик представляет собой герметичный полый металлический или стеклянный цилиндр, заполненный разреженной смесью инертных газов (аргон, неон) с некоторыми добавками, улучшающими работу счетчика (пары спирта). Внутри цилиндра, вдоль его оси, натянута тонкая металлическая нить (анод), изолированная от цилиндра. Катодом служит металлический корпус или тонкий слой металла, нанесенный на внутреннюю поверхность стеклянного корпуса счетчика. К металлической нити и токопроводящему слою (катоду) подают напряжение электрического тока.
В газоразрядных счетчиках используют принцип усиления газового разряда. В отсутствие радиоактивного излучения свободных ионов в объеме счетчика нет. Следовательно, в цепи счетчика электрического тока также нет. При воздействии радиоактивных излучений в рабочем объеме счетчика образуются заряженные частицы. Электроны, двигаясь в электрическом поле к аноду счетчика, площадь которого значительно меньше площади катода, приобретают кинетическую энергию, достаточную для дополнительной ионизации атомов газовой среды. Выбитые при этом электроны также производят ионизацию. Таким образом, одна частица радиоактивного излучения, попавшая в объем смеси газового счетчика, вызывает образование лавины свободных электронов. На нити счетчика собирается большое количество электронов. В результате этого положительный потенциал резко уменьшается и возникает электрический импульс. Регистрируя количество импульсов тока, возникающих в единицу времени, можно судить, об интенсивности радиоактивных излучений.
Единицы измерения радиоактивности.
В качестве единицы активности принято одно ядерное превращение в секунду. В целях сокращения используется более простой термин - "один распад в секунду" (расп/с). В системе СИ эта единица получила название "беккерель" (Бк). В практике радиационного контроля широко используется внесистемная единица активности - "кюри" (Ки). Один кюри - это 3,7х1010 распадов в секунду.
Концентрация радиоактивного вещества обычно характеризуется концентрацией его активности. Она выражается в единицах активности на единицу массы.
Единицы ионизирующих излучений
Для измерения величин, характеризующих ионизирующее излучение, исторически появилась единица "рентген". Эта единица определяется как доза рентгеновского или гамма-излучения в воздухе, при которой сопряженная корпускулярная эмиссия на 0, 001293 г воздуха производит в воздухе ионы, не-сущие заряд в 1 эл.-ст. ед. ионов каждого знака здесь 0,001293 г? масса 1 см3 атмосферного воздуха при 0 оС и давлении 760 мм рт. ст.).
Экспозиционная доза - мера ионизационного действия рентгеновского или гамма-излучений, определяемая по ионизации воздуха.
В СИ единицей экспозиционной дозы является "один кулон на килограмм" (Кл/кг). Внесистемной единицей является "рентген" (Р), 1 Р = 2,58х10-4 Кл/кг. В свою очередь 1 Кл/кг = 3,88х103 Р.
Мощность экспозиционной дозы - приращение экспозиционной дозы в единицу времени. Ее единица в системе СИ - "ампер на килограмм" (А/кг). Однако в большинстве случаев на практике пользуются внесистемной единицей "рентген в секунду" (Р/с) или "рентген в час" (Р/ч).
Поглощенная доза - энергия радиоактивного излучения, поглощенная единицей массы облучаемого вещества или человеком. Чем продолжительнее время облучения, тем больше поглощенная доза. При одинаковых условиях облучения доза зависит от состава вещества. В качестве единицы поглощенной дозы излучения в системе СИ предусмотрена специальная единица "грей" (Гр). 1 грей - это такая единица поглощенной дозы, при которой 1 кг облучаемого вещества поглощает энергию в 1 джоуль (Дж). Следовательно 1 Гр = 1 Дж/кг.
Поглощенная доза излучения является основной физической величиной, определяющей степень радиационного воздействия.
Мощность поглощенной дозы - это приращение дозы в единицу времени. Она характеризуется скоростью накопления дозы и может увеличиваться или уменьшаться во времени. Ее единица в системе СИ - "грей в секунду" (Гр/с). Это такая мощность поглощенной дозы облучения, при которой за 1 с в веществе создается доза облучения 1 Гр.
На практике для оценки поглощенной дозы широко используют внесистемную единицу мощности поглощенной дозы "рад в час" (рад/ч) или "рад в секунду" (рад/с).
Эквивалентная доза - это понятие введено для количественного учета неблагоприятного биологического воздействия различных видов ионизирующих излучений. Определяется она по формуле: Дэкв = Q. Д, где Д - поглощенная доза данного вида излучения; Q - коэффициент качества излучения, который составляет для рентгеновского, гамма- и бета-излучений 1, для нейтронов с энергией от 0,1 до 10, для альфа - излучения с энергией менее 10 Мэв 20. Из приведенных данных видно, что при одной и той же поглощенной дозе нейтронное и альфа-излучение вызывают соответственно в 10 и 20 раз больший поражающий эффект.
В системе СИ эквивалентная доза измеряется в "зивертах" (Зв).
Бэр (биологический эквивалент рентгена) - это внесистемная единица эквивалентной дозы. Бэр - такая поглощенная доза любого излучения, которая вызывает тот же биологический эффект, что и 1 рентген гамма-излучения. Поскольку коэффициент качества гамма-излучения равен 1, то на местности, загрязненной радиоактивными веществами при внешнем облучении 1 Зв = 1 Гр; 1 бэр = 1 рад; 1 рад = 1 Р.
Мощность эквивалентной дозы - отношение приращения эквивалентной дозы за единицу времени и выражается в "зивертах в секунду" (Зв/с). Поскольку время пребывания человека в поле облучения при допустимых уровнях измеряется, как правило, часами, предпочтительно выражать мощность эквивалентной дозы в "микрозивертах в час" (мкЗв/ч).
Согласно заключению Международной комиссии по радиационной защите, вредные эффекты у человека могут наступать при эквивалентных дозах не менее 1,5 Зв/год (150 бэр/год), а в случаях кратковременного облучения - при дозах выше 0,5 Зв (бэр). Когда облучение превышает некоторый порог, возникает лучевая болезнь. В таблице 3 приведены дозиметрические величины и единицы их измерения.
Измеритель мощности экспозиционной дозы излучения ДП-5Б
Измеритель мощности экспозиционной дозы излучения ДП-5Б предназначен для измерения уровней радиации на местности и радиоактивной зараженности различных предметов. Мощность гамма-излучения определяется в миллирентгенах или в рентгенах в час для той точки пространства, в которой помещен при измерениях счетчик прибора. Кроме того, имеется возможность обнаружения бета-излучения.
Диапазон измерений прибора по гамма-излучению от 0,05 мР/ч до 200 Р/ч. Он разбит на шесть поддиапазонов (таблица 4).
Отсчет показаний прибора производится по нижней шкале микроамперметра в Р/ч, по верхней шкале - в мР/ч с последующим умножением на соответствующий коэффициент поддиапазона.
Измерения гамма-излучений прибором можно производить в интервале температур воздуха от минус 40 до плюс 50 оС, погрешность измерений в этом интервале температур не превышает 0,35-0,7% на 1 оС.
Питание прибора осуществляется от двух элементов типа 1,6 ПМЦ-Х-1,05 (КБ-1), обеспечивающих непрерывную работу в нормальных условиях в течение 40 ч.
Для работы в темноте шкала прибора подсвечивается двумя лампочками, которые питаются от одного элемента типа 1,6 ПМЦ-Х-1,05 (КБ-1).
Прибор имеет звуковую индикацию на всех поддиапазонах, кроме первого. Звуковая индикация прослушивается с помощью головных телефонов.
Устройство прибора ДП-5
На панели измерительного пульта размещаются: кнопка сброса показаний; потенциометр регулировки режима; микроамперметр; тумблер подсвета шкалы; переключатель поддиапазонов; гнездо включения телефона.
Зонд герметичен и имеет цилиндрическую форму. В нем размещены: монтажная плата, газоразрядные счетчики, усилитель и другие элементы схемы. На плату надевается стальной корпус с окном для индикации бета-излучения. Окно заклеено этилцеллюлозной водостойкой пленкой. Зонд имеет поворотный экран 11, который фиксируется в двух положениях: "Б" и "Г". На корпусе зонда есть два выступа 9, 10, которыми он ставится на обследуемую поверхность при индикации бета-зараженности.
Для удобства работы при измерениях зонд имеет ручку 12, к которой присоединяется удлинительная штанга.
Телефон состоит их двух малогабаритных телефонов типа ТГ-7М и оголовья из мягкого материала. Он подключается к пульту для звуковой индикации.
Прибор носится в футляре 13 из искусственной кожи. Он состоит из двух отсеков - для пульта и для зонда. В крышке футляра имеется окно для наблюдения показаний прибора. С внутренней стороны на крышке изложены правила пользования прибором, таблица допустимых величин зараженности и прикреплен контрольный радиоактивный источник для проверки работоспособности прибора. Контрольный источник закрыт защитной пластинкой 5, которая должна открываться только при проверке работоспособности прибора.
Подготовка прибора ДП-5Б к работе
Подготовка прибора к работе проводится в следующей последовательности:
открыть крышку футляра, провести внешний осмотр, пристегнуть к футляру поясной и плечевой ремни;
вынуть зонд детектирования;
подключить телефоны;
установить корректором механический нуль на шкале микроамперметра;
ручку переключателя поддиапазонов поставить в положение "Выкл", а ручку "Реж" (режим) повернуть против часовой стрелки до упора;
включить прибор, поставив ручку переключателя поддиапазонов в положение "Реж";
плавно вращая ручку "Реж" по часовой стрелке, установить стрелку микроамперметра на метку;
проверить работоспособность прибора на всех поддиапазонах, кроме первого ("200"), с помощью радиоактивного источника, укрепленного на крышке футляра;
открыть радиоактивный источник, вращая защитную пластинку вокруг оси;
повернуть экран зонда в положение "Б", установить зонд опорными выступами на крышку футляра так, чтобы источник находился против окна зонда;
подключить телефоны;
последовательно перевести переключатель поддиапазонов в положения "Х 1000", "Х 100", "Х 10", "Х 1" и "Х 0,1";
наблюдать за показаниями прибора и прослушивать щелчки в телефонах (стрелка микроамперметра должна зашкаливать-ся на VI и V поддиапазонах, отклоняться на IV поддиапазоне, а на III и II может не отклоняться из-за недостаточной активности бета-источника);
ручку переключателя поддиапазонов поставить в положение "Реж";
закрыть радиоактивный источник;
повернуть экран зонда в положение "Г".
При выполнении вышеуказанных операций прибор ДП-5Б готов к работе.
Радиационная разведка местности
Заражение местности радиоактивными веществами измеряется в рентген-часах (Р/ч) и характеризуется уровнем радиации.
Уровень радиации показывает дозу облучения, которую может получить человек в единицу времени (ч) на зараженной местности. Местность считается зараженной при уровне радиации 0,5 Р/ч и выше.
При радиационной разведке уровни радиации на местности измеряются на I поддиапазоне "200" в пределах от 5 до 200 Р/ч, а до 5 Р/ч - на II поддиапазоне "х 1000". При измерении прибор подвешивают на шею на высоте 0,7-1 м от поверхности земли. Зонд прибора при измерении уровней радиации должен быть в футляре, а экран его установлен в положение "Г". Переключатель поддиапазонов переводят в положение "200" и снимают показания по нижней шкале микроамперметра (0-200 Р/ч).
При показаниях прибора меньше 5 Р/ч переключатель поддиапазонов переводят в положение "х1000" и снимают показания по верхней шкале (0-5 мР/ч). Зонд прибора, также как и при первом измерении, должен быть уложен в футляр.
Контроль радиоактивного заражения
Контролю радиоактивного заражения подвергаются кожные покровы людей, их одежда, сельскохозяйственные животные, различные предметы, техника транспорт, продовольствие, вода и т.п.
Измерения проводятся для того, чтобы в случае заражения радиоактивными веществами определить, какими предметами и продуктами можно пользоваться, не подвергаясь опасности поражения.
Контроль степени радиоактивного заражения проводится в следующей последовательности:
измеряется гамма-фон в месте, где будет определяться степень заражения объекта, не менее 15-20 м от обследуемого объекта;
подносят зонд (экран зонда в положении "Г") к поверхности объекта на расстояние 1,5-2 см и медленно перемещают над поверхностью объекта;
из максимальной мощности экспозиционной дозы, измеренной на поверхности объекта, вычитают гамма - фон.
Полученный результат будет характеризовать степень радиоактивного заражения объекта.
Для обнаружения бета- излучений необходимо:
установить экран зонда в положении "Б";
поднести к обследуемой поверхности на расстояние 1,5-2 см;
ручку переключателя поддиапазонов последовательно поставить в положения "Х 0,1", "Х 1", "Х 10" до получения отклонения стрелки микроамперметра в пределах шкалы.
Увеличение показаний прибора на одном и том же поддиапазоне по сравнению с гамма-измерением показывает наличие бета-излучения.
При определении степени радиоактивного заражения воды отбирают две пробы общим объемом 1,5-10 л. Одну - из верхнего слоя водоисточника, другую - с придонного слоя. Измерения производят зондом в положении "Б", располагая его на расстоянии 0,5-1 см от поверхности воды, и снимают показания по верхней шкале.
На крышке футляра измерителя мощности экспозиционной дозы ДП-5Б даны сведения о допустимых нормах радиоактивного заражения и указаны поддиапазоны, на которых они измеряются.