Уравнение равновесия напряжений фазы обмотки якоря неявнополюсного СГ.




Уравнение равновесия напряжений фазы обмотки якоря явнополюсного СГ.

Уравнение равновесия напряжений СГ выглядит:

Здесь Е0 – ЭДС в фазе статора наводимая потоком обмотки возбуждения

Ead – ЭДС индуцируемая в обмотке якоря потоком продольной реакции якоря Фad

Eaq - ЭДС индуцируемая в обмотке якоря потоком поперечной реакции якоря Фaq

Eas - ЭДС рассеяния индуцируемая в фазе обмотке якоря потоком рассеяния обмотки якоря Фas

ra – активное сопротивление фазы обмотки якоря

Уравнение равновесия напряжений фазы обмотки якоря неявнополюсного СГ.

Уравнение равновесия напряжений СГ выглядит:

Здесь Е0 – ЭДС в фазе статора наводимая потоком обмотки возбуждения

- индуктивное сопротивление рассеяния фазы обмотки статора

- индуктивное сопротивление продольной реакции якоря в следствии равномерности воздушного зазора

ra – активное сопротивление фазы обмотки якоря

 

 

6. Векторные диаграммы синхронного генератора.

7. Характеристика холостого хода синхронного генератора.

 

8. Внешняя характеристика синхронного генератора.

 

9. Регулировочная характеристика синхронного генератора.

 


10. Характеристика 3-х фазного короткого замыкания синхронного генератора.

Характеристика трехфазного короткого замыкания представляет собой зависимость тока якоря при коротком замыкании от тока возбуждения IK= f(IB) при n=const (1!!)

 

11. Параллельная работа синхронных генераторов.

В том случае, когда мощность потребителя становится больше номинальной мощности работающего генератора, параллельно ему включают другой генератор.

Для включения синхронного генератора на параллельную работу с электрической сетью или другим, уже работающим синхронным генератором необходимо выполнить следующие условия:

напряжение подключаемой машины должно быть равно напряжению сети или работающей машины;

частота подключаемого генератора должна быть равна частоте сети;

напряжения всех фаз подключаемой машины должны быть противоположны (по фазе) напряжениям соответствующих фаз сети или работающей машины;

для подключения на параллельную работу трехфазного синхронного генератора необходимо также обеспечить одинаковое чередование фаз подключаемой машины и сети.

 

12. Угловая характеристика синхронного двигателя.

При холостом ходе двигателя оси ротора и статора совпадают,q= 0, соответственно M = 0, P = 0. С увеличением момента сопротивления нагрузки на валу ротор отстает от магнитного поля, а электрическая мощность P и электромагнитный момент M возрастают. Причем, в отличие от генераторного режима, M является полезным моментом, вращающим вал ротора, а активная мощность теперь потребляется двигателем от сети. При изменении угла q от 0 до +90°двигатель работает устойчиво. Если еще увеличить момент сопротивления нагрузки, то уголqпревысит значение +90°, а M, P начнут уменьшаться. При этом ротор начнет вращаться несинхронно с магнитным полем. Тогда двигатель перестанет работать параллельно с сетью — выпадет из синхронизма, что может вызвать нежелательные явления и рассматриваться как аварийный режим.

 

13. Механическая характеристика синхронного двигателя.

 

14. Способы синхронного генератора с сетью. Есть 2 способа.

1 При включении синхронного генератора на параллель­ную работу с сетью по способу точной синхронизации стре­мятся к тому, чтобы при включении не возникало больших бросков тока. Большие толчки тока вызывают большие мо­менты, действующие как на ротор, так и на статор, и силы, которые могут привести к разрушению обмотки статора.

2 При самосинхронизации неизбежно возникновение значительного толчка тока, так как включение невозбужденного генератора в сеть с напряжением UС, эквивалентно внезапному короткому замыканию этого генератора при работе на холостом ходу с Е0=UС. Однако толчок тока при самосинхронизации будет все же меньше, так как, кроме сопротивления генератора, в цепи будут действовать также сопротивления элементов сети (повышающие трансформаторы, линия и т. д.).

 

 

15. U – образная характеристика синхронного генератора.

Предположим, что генератор после подключения на сеть работает без нагрузки и его ЭДС уравновешивает напряжение сети . Е этом увеличить ток в обмотке возбуждения, т. е. пере­возбудить машину, то ЭДС увеличится до значения и в цепи генератора появится избыточная ЭДС (рис. 21.10, а),вектор которой совпадает по направлению с вектором ЭДС . Ток , вызванный ЭДС , будет отставать от нее по фазе на 90° (поскольку ). По отношению к ЭДС этот ток также будет отстающим (индуктивным). С увеличением перевоз­буждения значение реактивного (индуктивного) тока увеличится.

Если же после того, как генератор подключен к сети, умень­шить ток возбуждения, т. е. недовозбудит ь машину, то ЭДС уменьшится до значения и в цепи генератора опять будет действовать избыточная ЭДС . Теперь вектор этой ЭДС будет совпадать по направлению с вектором напряжения сети (рис. 21.10, б), и поэтому ток , вызванный этой ЭДС и отстающим от нее по фазе на 90°, будет опере­жающим (емкостным) по отношению к ЭДС генератора .

 

Это сопровождается появлением в обмотке статора реактивного тока , которым по отношению к ЭДС является отстающим (индуктивным). Вы званная этим током продольно-размагничивающая реакция якоря компенсирует избыточную МДС возбуждения так, что ЭДС гене­ратора остается неизменной. Такой же процесс происходит и при недовозбуждении генератора с той лишь разницей, что в обмотке появляется опережающий (емкостный) ток , а вызванная этим током продольно-намагничивающая реакция якоря компен­сирует недостающую МДС возбуждения.

 

16. Пуск синхронных двигателей.

Одним из главных недостатков синхронных двигателей является сложность их пуска в ход. Пуск синхронных двигателей может быть осуществлен при помощи вспомогательного пускового двигателя. Пуск синхронного двигателя при помощи вспомогательного двигателя. Если ротор синхронного двигателя с возбужденными полюсами раскрутить другим, вспомогательным двигателем до скорости вращения поля статора, то магнитные полюсы статора, взаимодействуя с полюсами ротора, заставят ротор вращаться далее самостоятельно без посторонней помощи, в такт с полем статора, т. е. синхронно (откуда эти двигатели и получили свое название).

 

17. Сравнение синхронных и асинхронных двигателей.

Чтобы остановить выбор на синхронном или асинхронном двигателе для приведения во вращение того или иного производственного механизма, необходимо иметь в виду следующее.

Обмотки статора обоих двигателей получают питание от сети трехфазного переменного тока. Для питания обмотки возбуждения синхронного двигателя требуется, кроме того, источник электрической энергии постоянного тока, правда, относительно небольшой мощности.

Асинхронный пуск синхронных двигателей несколько сложнее пуска асинхронных двигателей с короткозамкнутым ротором. В отношении пусковых свойств асинхронные двигатели с фазным ротором имеют весьма существенные преимущества перед синхронными двигателями.

Частота вращения синхронных двигателей остается постоянной при изменении нагрузки, тогда как у асинхронных двигателей даже при их работе на естественной характеристике она несколько изменяется.

Асинхронные двигатели дают возможность регулировать частоту вращения различными способами,. Использование некоторых из этих способов для регулирования частоты вращения синхронных двигателей в принципе невозможно, а некоторых связано с большими конструктивными и эксплуатационными трудностями. Учитывая это, следует иметь в виду, что синхронные двигатели относятся к двигателям с нерегулируемой частотой вращения.

Воздействуя на ток возбуждения синхронного двигателя, можно в широких пределах изменять его коэффициент мощности. Можно, в частности, заставить синхронный двигатель работать с cos φ = 1, а также с опережающим током. Последнее может быть использовано для улучшения коэффициента мощности других потребителей, питающихся от той же сети. В отличие от этого асинхронный двигатель представлет собой активно-индуктивную нагрузку и имеет всегда cos φ < 1.

Из-за малых потерь мощности в роторе, а также в обмотке статора при работе с высоким cos φ КПД синхронных двигателей оказывается больше, а масса и габаритные размеры меньше, чем у асинхронных двигателей.

Учитывая указанные достоинства синхронных двигателей, стараются везде, где это возможно, вместо асинхронных двигателей применять синхронные. Они применяются обычно в установках средней и большой мощности при редких пусках, в случаях, когда не требуется электрического регулирования частоты вращения. Синхронные двигатели используются, например, для привода насосов, компрессоров, вентиляторов, генераторов постоянного тока преобразовательных установок.

 

18. Синхронные двигатели малой мощности.

В синхронных двигателях малой мощности роль вращающегося постоянного электромагнита выполняет постоянный магнит, изготовленный из магнитно-твердого материала и укрепленный на оси ротора. Пуск такого двигателя в ход осуществляется обычно непосредственным подключением его фазных обмоток статора к электрической сети. Для возникновения асинхронного момента при пуске двигателя в полюсах постоянного магнита располагаются стержни коротко-замкнутой обмотки.

 

19. Область применения синхронных двигателей.

Синхронные машины могут работать как генераторами, так и электродвигателями. Основная область применения синхронных машин — энергетика, где они используются в качестве генераторов электрической энергии. В зависимости от типа привода синхронные генераторы делятся на турбогенераторы, гидрогенераторы и дизельные генераторы. Синхронные электродвигатели широко применяют для привода мощных компрессоров, насосов, вентиляторов. Синхронные микродвигатели используют для привода лентопротяжных механизмов регистрирующих приборов, магнитофонов и так далее.

 

20. Синхронная машина в режиме компенсатора реактивной мощности.

Синхронный компенсатор (СК) представляет собой синхронную машину, предназначенную для генерирования реактивной мощности. Синхронный компенсатор включают в электрическую систему с целью повышения ее коэффициента мощности.Принцип происходящих при этом явлений состоит в том, что необходимую для работы некоторых потребителей реактивную мощность вырабатывает не синхронный генератор, установленный на электростанции, а синхронный компенсатор, установленный в непосредственной близости к потребителю. К числу потребителей переменного тока, требующих значительной реактивной мощности, в первую очередь относятся асинхронные двигатели. Благодаря этому реактивная мощность в СГ и ЛЭП доведена до некоторого минимального значения . Это способствует повышению технико-экономических показателей всей электрической системы.

 

 

21. Устройство машин постоянного тока.

1 — Станина. 2, 3 — главные и добавочные полюсы. 4 — вентилятор 5 —якорь. 6 — коллек­тор. 7 —угольные щетки. 8 — щеткодержатели; 9 —траверса

 

 

22. Принцип действия машин постоянного тока.

В основе работы генератора лежит закон электромагнитной индукции. При вращении рамки в магнитном поле постоянного магнита в ней будет индуцироваться переменная ЭДС, изменяющаяся по синусоидально­му закону.

Когда плоскость витка совпадает с плоскостью осевой линии то проводники пересекают макси­мальный магнитный поток и в них индуцируется максимальная ЭДС. При гори­зонтальном положении витка ЭДС в проводниках равна нулю.

Направление индуцированной ЭДС определяется по правилу правой руки. При переходе витка под другой полюс направление ЭДС в нем меняется на обратное. Но так как вместе с витком вращается и коллектор, то щетке, находящейся под северным полюсом, всегда будет один и тот же знак ЭДС. В результате полярность щеток остается неизменной. Если же полукольца заменить кольцами, то щетками с них мы будем снимать синусоидальное на­пряжение при вращении якоря.

Несмотря на то, что знак ЭДС не изменяется, по величине она достигает.ЭДС с такой пульсацией непригодна для большинства приемников. Поэтому для умень­шения пульсаций обмотку якоря выполняют из большого числа витков (кату­шек), а коллектор - из большого числа коллекторных пластин. при вращении одного витка при двух коллекторных пластинах; если витков т, то пластин . При т = 16 пульсация уже практически незаметна.

 

 

23. Обратимость машин постоянного тока.

Обратимость машин. При работе машины в генераторном ре­жиме в результате взаимодействия проводников обмотки якоря, по которым протекает ток, с магнитным потоком полюсов возникает электромагнитная сила F (правило левой руки), препятствующая вращению якоря Для преодоления этой силы к яко­рю генератора должна быгь постоянно приложена внешняя сила.Если убрать внешнюю силу и, сохранив полярность полюсов, пропустить через обмотку якоря ток того же направления, то элект­ромагнитная сила сохраняет свое направление. Под действием этой силы якорь будет вращаться в направлении, противоположном на­правлению вращения генератора — машина переходит в двигатель­ный режим. Следовательно, каждая машина постоянного тока мо­жет работать в режиме как генератора, так и двигателя Это свой­ство электрических машин называется обратимостью.В зависимости от способа питания обмоток возбуждения двига­тели делятся на двигатели независимого, параллельного, последо­вательного и смешанного возбуждения.

 

24. Явление коммутации МПТ.

В широком смысле слова под коммутацией понимают все явления и процессы, возникающие между щетками и коллекторными пластинами, к которым в первую очередь относится искрение, вызываемое как механическими причинами, так и электромагнитными процессами. К механическим причинам относятся: биение коллектора, вибрация щеткодержателей, трение шероховатых поверхностей щеток о выступающие коллекторные пластины, в результате чего изменяется переходное сопротивление контактов, а иногда и возникает их разрыв, сопровождающийся электрической дугой. Однако, даже при идеальных условиях механического контакта искрение может возникать вследствие электромагнитных процессов. Каждая из секций обмотки якоря при его вращении периодически попадает из одной параллельной ветви в другую, при этом происходит изменение направления тока в ней на противоположное. Ток параллельной ветви равен току якоря, отнесенного к числу параллельных ветвей: , а его изменение происходит за время, в течение которого щетка замыкает коллекторные пластины, к которым присоединяется коммутируемая секция. Это время называется периодом коммутации и зависит от ширины щетки и окружной скорости движения коллектора:

 

 

25. Реакция якоря.

При нагрузке машины () обмотка якоря создает собственное магнитное поле. Поля якоря и индуктора, действующие совместно, образуют результирующее поле. Действие поля якоря на поле индуктора называется реакцией якоря. Реакция якоря в машине постоянного тока определяется положением щеток относительно линии геометрической нейтрали. Линия геометрической нейтрали –это линия, проходящая через ось вращения якоря в радиальном направлении посередине между двумя соседними главными полюсами.

 

 

26. Физическая и геометрическая нейтраль машин постоянного тока.

Физическая нейтраль — линия, проходящая через центр якоря и проводники обмотки якоря, в которых индуцируемая результирующим магнитным потоком э. д. с. равна нулю, поворачивается на угол а по отношению к геометрической нейтрали (в сторону опережения у генераторов, в сторону отставания — у двигателей). При холостом ходе физическая нейтраль совпадает с геометрической.

Геометрическая нейтраль п - п - линия, перпендикулярная оси полюсов и разделяющая на дуге якоря области северного и южного полюсов, совпадает в этих условиях с физической нейтралью - линией, проходящей через точки окружности якоря, где магнитная индукция равна нулю. Щетки, условно показанные опирающимися на якорь (хотя фактически они установлены на коллекторе), находятся на геометрической нейтрали.

 

 

27. Применение дополнительных полюсов. Для наладки МПТ – маш пост тока

Наладка коммутации методом подпитки дополнительных полюсов. Ввиду сложности теоретического анализа коммутационных процессов окончательная настройка коммутации МПТ осуществляется экспериментально, по данным визуального контроля степени искрения.

 

28. Машина постоянного тока в режиме генератора.

Свойством обратимости, т.е. может работать в режиме генератора или двигателя. Если к зажимам приведенного во вращение якоря генератора присоединить сопротивление нагрузки, то под действием ЭДС якорной обмотки в цепи возникает ток

где U - напряжение на зажимах генератора; Rя - сопротивление обмотки якоря.

 

 

29. Характеристика холостого хода ГПТ.

Классификация Генератор постоянного тока преобразует механическую энергию в электрическую. В зависимости от способов соединения обмоток возбуждения с якорем генераторы подразделяются на:

1. генераторы независимого возбуждения;

2. генераторы с самовозбуждением;

  • генераторы параллельного возбуждения;
  • генераторы последовательного возбуждения;
  • генераторы смешанного возбуждения;

 

 

30. Регулировочная характеристика ГПТ.

Зависимость частоты вращения ротора от напряжения питания обмоток ротора ДПТ, отображается в виде графика. Горизонтальная ось (абсцисс) — напряжение питания обмоток ротора, вертикальная ось (ординат) — частота вращения ротора. Регулировочная характеристика ДПТ есть прямая, идущая с положительным наклоном.

 

 

31. Внешняя характеристика ГПТ.

Характеристики генератора определяют его рабочие свойства и представляют зависимость между основными величинами, которы­ми являются э. д. с. в обмотке якоря Е, напряжение на его зажи­мах и, ток в якоре Iя, ток возбуждения Iв и скорость вращения якоря п. Характеристики представляют собой зависимости между двумя из указанных основных величин при неизменных остальных. Эти зависимости имеют различный вид для генераторов разных типов.Снятие всех характеристик машины производится при постоянной скорости вращения якоря, так как при изменении скорости зна­чительно изменяются все характеристики генератора.Характеристика холостого хода генератора представляет собой зависимость между э. д. с. в якоре и током возбуждения, снятую при отсутствии нагрузки и постоянном числе оборотов.Для генераторов независимого возбуждения при отсутствий; нагрузки (холостой ход) ток в якоре равен нулю, то при постоян­ной скорости вращения э. д. с. окажется прямо пропорциональной магнитному потоку. Поэтому в измененном масштабе характери­стика холостого хода представляет магнитную характеристику машины.

 

32. Основные схемы включения ДПТ.

Не зависимым паралельным последовательным смешанным возбуждением

 

 

33. Характеристика ДПТ с независимым возбуждением.

Двигатель постоянного тока независимого возбуждения В этом двигателе обмотка возбуждения подключена к отдельному источнику питания. В цепь обмотки возбуждения включен регулировочный реостат rрег, а в цепь якоря — добавочный (пусковой) реостат Rп. Характерная особенность ДПТ НВ — его ток возбуждения Iв не зависит от тока якоря Iя так как питание обмотки возбуждения независимое.

 

 

34. Характеристика ДПТ с параллельным возбуждением.

Электродвигателем параллельного возбуждения называется двигатель постоянного тока, обмотка возбуждения которого включена параллельно обмотке якоря. При снятии характеристик к цепи якоря подводится номинальное напряжение Uн=const.

 

 

35. Характеристика ДПТ с последовательным возбуждением.

Ток, потребляемый двигателем из сети, протекает по якорю и обмотке возбуждения, соединенной с якорем последовательно. Поэтому I = Iя = Iв.Также последовательно с якорем включен пусковой реостат Rп, который, как и у двигателя параллельного возбуждения, после выпуска выводится.

 

36. Характеристика ДПТ со смешанным возбуждением.

В этом двигателе имеются две обмотки возбуждения – параллельная (шунтовая, ШО), подключенная параллельно цепи якоря, и последовательная (сериесная,СО), подключенная последовательно цепи якоря. Эти обмотки по магнитному потоку могут быть включены согласно или встречно.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-07-13 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: