Иммерсионная световая микроскопия




Иммерсионная микроскопия используется с целью повышения разрешающей способности обычного светового микроскопа. Разрешающая способность - это минимальное расстояние между двумя точками, при котором они еще видны раздельно. Она прямо пропорциональна длине волны падающего света и обратно пропорциональна показателю преломления среды между объектом и объективом и синусу половины входного угла объектива. Чаще всего для иммерсионной микроскопии используют кедровое масло, которое имеет такой же коэффициент преломления, как стекло, поэтому при прохождении световых лучей через систему масло-объектив они не преломляются, и не происходит искажения изображения.

Электронная микроскопия

Для изучения структуры клеток на субклеточном и молекулярном уровнях, а также для изучения вирусов используют электронную микроскопию. Ценность электронной микроскопии заключается в ее способности разрешать объекты, не разрешаемые оптическом микроскопом в видимом или ультрафиолетовом свете. Малая длина волны электронов, которая уменьшается в прямой зависимости от подаваемого ускоряющего напряжения, позволяет разрешать, т.е. различать как отдельные объекты, отстоящие друг от друга всего на 2А (0,2 нм или 0,0002 мкм) или даже меньше, в то время как предел разрешения световой оптики лежит вблизи 0,2 мкм (он зависит от длины волны используемого света).

Электронная микроскопия, при которой изображение получают благодаря прохождению (просвечиванию) электронов через образец, называется просвечивающей (трансмиссивной). При сканирующей (растровой), или туннельной электронной микроскопии пучок электронов быстро сканирует поверхность образца, вызывая излучение, которое посредством катодно-лучевой трубки формирует изображение на светящемся экране микроскопа по аналогии с формированием телевизионного изображения.

Принципиальная оптическая схема электронного микроскопа аналогична схеме светового, в котором все оптическое элементы заменены соответствующими электрическими: источник света – источником электронов, стеклянные линзы – линзами электромагнитными. В электронных микроскопах просвечивающего типа различают три системы: электронно-оптическую, вакуумную и электропитания.

Источником электронов является электронная пушка, состоящая из V-образного вольфрамового термокатода, который при нагревании до 2900°С при подаче постоянного напряжения до 100 кВ в результате термоэмиссии испускает свободные электроны, ускоряемые затем электростатическим полем, создаваемым между фокусирующим электродом и анодом. Электронный пучок затем формируется с помощью конденсорных линз и направляется на исследуемый объект. Электроны, проходя сквозь объект, за счет его разной толщины и электроплотности отклоняются под различными углами и попадают в объективную линзу, которая формирует первое увеличение объекта.

После объективной линзы электроны попадают в промежуточную линзу, которая предназначена для плавного изменения увеличения микроскопа и получения дифракции с участков исследуемого образца. Проекционная линза создает конечное увеличенное изображение объекта, которое направляется на флуоресцентный экран. Благодаря взаимодействию быстрых электронов с люминофором экрана на нем возникает видимое изображение объекта. После наведения резкости сразу проводят фотографирование. Увеличение конечного изображения на экране определяется как произведение увеличений, даваемых объективной, промежуточной и проекционной линзами.

Электронно-микроскопическому исследованию могут быть подвергнуты как ультратонкие срезы различных тканей, клеток, микроорганизмов, так и целые бактериальные клетки, вирусы, фаги, а также субклеточные культуры, выделяемые при разрушении клеток различными способами.

Недостатки электронного микроскопа:

1) подготовленный к исследованию материал должен быть мертвым, так как в процессе наблюдения он находится в вакууме;

2) трудно быть уверенным, что объект воспроизводит живую клетку во всех ее деталях, поскольку фиксация и окрашивание исследуемого материала могут изменить или повредить ее структуру;

3) дорого стоит и сам электронный микроскоп и его обслуживание;

4) подготовка материала для работы с микроскопом отнимает много времени и требует высокой квалификации персонала;

5) исследуемые образцы под действием пучка электронов постепенно разрушаются. Поэтому, если требуется детальное изучение образца, необходимо его фотографировать.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: