Понятие «метода измерений», «принципа измерений».




Негосударственное образовательное учреждение

Среднего профессионального образования

«Нефтяной техникум»

КОНТРОЛЬНАЯ РАБОТА

ПО ДИСЦИПЛИНЕ

«Метрология »

ТЕМА: «Метрология, стандартизация, сертификация»

№ Варианта 13

  Выполнил(а) студент(ка) заочного отделения 2 курса группы ИР13 Специальность:   Дата выполнения:   Норлусенян Даниил Александрович «Бурение нефтяных и газовых месторождений»   «___ »___________ 2016 г.
    Проверил преподаватель: Русских Л.Г. В результате рецензирования получил оценку: __________, имеются замечания:___________________________ ________________________________________________________________________________________________________________________________________________
  Контрольную работу принял(а) _______________________________ Дата принятия: «___»_______2016 г. Рег. №_________________________
     

Ижевск

Г.

Содержание

1) Понятие «метода измерений», «принципа измерений»…………….. 3

2) Категории стандартов: ГОСТ, ОСТ, ТУ, СТП, СТО, ИСО, какие стандарты действуют на вашем предприятии…………………… 12

3) Виды сертификации. Какому виду сертификации подлежит продукция (работы) вашего предприятия…………………………… 16

4) Практическое задание №1………………………………………………. 25

5) Практическое задание №2………………………………………………. 27

6) Список литературы………………………………………………………. 28

Понятие «метода измерений», «принципа измерений».

В наиболее широком смысле к «измерениям» относят последовательность действий, включающую констатацию наличия у объекта некоторого свойства, качественную оценку этого свойства как определенной величины (идентификацию свойства), сопоставление величины, воспроизводимой на объекте, с единицей этой величины, определение их количественного соотношения. Под измерением некоторого свойства можно понимать получение оценки этого свойства при сопоставлении измеряемой величины с единицей, воспроизводимой мерой (непосредственное воспроизведение) или прибором (опосредованное воспроизведение). Измерением свойства также часто называют помещение измеряемого свойства в определенную точку оценочной шкалы с использованием экспертных или аппаратурных методов. С этих позиций имеют право на существование как прямые, так и косвенные измерения. Косвенными измерениями называют расчет интересующей исследователя величины по известным зависимостям, в которые входят величины, полученные прямыми измерениями, например, измерения площадей таких плоских фигур, как треугольник или параллелограмм.

Измерение физической величины – совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения (в явном или неявном виде) измеряемой величины с ее единицей и получение значения этой величины (РМГ 29 -99). (Из отмененного ГОСТ 16263 –70: Измерение – нахождение значения физической величины опытным путем с помощью специальных технических средств).

Основное уравнение измерения физической величины можно записать в виде

Q = Nq,

где Q – измеряемая физическая величина;

q – единица физической величины;

N – числовое значение физической величины, которым определяется соотношение измеряемой физической величины и единицы, использованной при измерениях.

Из уравнения измерения следует, что в основе любого измерения лежит сравнение исследуемой физической величины с аналогичной величиной определенного размера, принятой за единицу, что обеспечивает нахождение соотношения только в явном виде. Суть измерения состоит в определении числового значения физической величины. Этот процесс называют измерительным преобразованием, подчеркивая связь измеряемой физической величины с полученным числом. Можно представить однократное преобразование или цепочку преобразований измеряемой физической величины в иную величину, но конечной целью преобразования является получение числа (рисунок 4.1).

Более строго измерение можно представить как получение первичной информации о физической величине и такое ее преобразование, с помощью которого определяют соотношение измеряемой физической величины и единицы этой величины. Измерительное преобразование всегда осуществляется с использованием некоторого физического закона или эффекта, который рассматривают как принцип, положенный в основу измерения (измерительного преобразования).

Принцип измерений – физическое явление или эффект, положенное в основу измерений (РМГ 29 – 99).(Из ГОСТ 16263 –70: Принцип измерений – совокупность физических явлений, на которых основаны измерения). Как примеры можно рассмотреть измерение температуры с помощью термопары (использование термоэлектрического эффекта), измерение массы взвешиванием на пружинных весах (определение искомой массы по пропорциональной ей силы тяжести, основанное на принципе пропорционального упругого растяжения). Из примеров видно, что фактически принципы измерений определяются принципами, заложенными в использованные средства измерений. Поскольку принципы измерений связаны с измерительными преобразованиями, то можно говорить о средствах измерений, построенных на определенных принципах преобразования измерительной информации с помощью механических, оптических, электрических, пневматических, гидравлических, магнитных и других устройств (преобразователей). В сложных средствах измерений используют комбинированные принципы, включающих два и более конкретных принципа преобразования, например оптико-механические приборы, фотоэлектрические приборы, электромагнитные приборы и ряд других. Для систематизации подхода к измерению, для выявления и оценки погрешностей, прежде всего, необходимо классифицировать сами измерения.

Видом измерений названа часть области измерений, имеющая свои особенности и отличающаяся однородностью измеряемых величин. Как примеры видов измерений приведены измерения электрического сопротивления, электродвижущей силы, электрического напряжения, магнитной индукции, относящиеся к области электрических и магнитных измерений. Дополнительно выделены подвиды измерений – часть вида измерений, выделяющаяся особенностями измерений однородной величины (по диапазону, по размеру величины и др.) и приведены примеры подвидов (измерения больших длин, имеющих порядок десятков, сотен, тысяч километров или измерения сверхмалых длин — толщин пленок как подвиды измерений длины). Такое истолкование видов и особенно подвидов измерений малоэффективно и не очень корректно – подвиды измерений фактически не определены, и неудачные примеры это подтверждают. Так толщины пленок могут быть от десятых долей микрометра до десятых миллиметра, что соответствует различиям на три порядка, требующим существенно различающихся подходов к измерениям – объединение их в один подвид нерационально. Более широкая трактовка видов измерений (с использованием различных оснований классификации) позволяет отнести к ним также приведенные в том же документе, но не сформированные в классификационные группы измерения, характеризуемые следующими альтернативными парами терминов:

· прямые и косвенные измерения,

· совокупные и совместные измерения,

· абсолютные и относительные измерения,

· однократные и многократные измерения,

· статические и динамические измерения,

· равноточные и неравноточные измерения.

Прямые и косвенные измерения различают в зависимости от способа получения результата измерений. Прямое измерение – измерение, при котором искомое значение физической величины получают непосредственно. В примечании к определению отмечено, что при строгом подходе существуют только прямые измерения и предлагается применять термин прямой метод измерений. Это предложение нельзя назвать удачным (см. далее классификацию методов измерений). Как примеры прямых измерений приведены: измерение длины детали микрометром, силы тока амперметром, массы на весах. Формально без учета погрешности измерения они могут быть описаны выражением

Q = х,

где Q – измеряемая величина,

х – результат измерения.

Косвенное измерение – определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной. Далее в документе сказано, что вместо термина косвенное измерение часто применяют термин косвенный метод измерений. Этот вариант предпочтительно не использовать как явно неудачный.

При косвенных измерениях искомое значение величины рассчитывают на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. Формальная запись такого измерения

Q = F (X, Y, Z,…),

где X, Y, Z,… – результаты прямых измерений.

Принципиальной особенностью косвенных измерений является необходимость обработки (преобразования) результатов вне прибора (на бумаге, с помощью калькулятора или компьютера), в противоположность прямым измерениям, при которых прибор выдает готовый результат. Классическими примерами косвенных измерений можно считать нахождение значения угла треугольника по измеренным длинам сторон, определение площади треугольника или другой геометрической фигуры и т.п. Один из наиболее часто встречающихся случаев применения косвенных измерений – определение плотности материала твердого тела.

При измерении в динамическом режиме появляются дополнительные динамические погрешности, связанные со слишком быстрым изменением либо самой измеряемой физической величины, либо входного сигнала измерительной информации, поступающего от постоянной измеряемой величины. Например, измерение диаметров тел качения (постоянных физических величин) в подшипниковой промышленности осуществляется с использованием контрольно-сортировочных автоматов. При этом скорость изменения измерительной информации на входе может оказаться соизмеримой со скоростью измерительных преобразований в цепи прибора. Измерение температуры с помощью ртутного термометра несоизмеримо медленнее измерений электронными термометрами, следовательно, применяемые средства измерений могут в значительной степени определить режим измерений.

По реализованной точности и по степени рассеяния результатов при многократном повторении измерений одной и той же величины различают равноточные и неравноточные, а также на равно-рассеянные и неравно-рассеянные измерения.

Равноточные измерения – ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений в одних и тех же условиях с одинаковой тщательностью. Неравноточные измерения – ряд измерений какой-либо величины, выполненных различающимися по точности средствами измерений и (или) в разных условиях.

В частности НД содержит определения следующих терминов:

- метод непосредственной оценки;

- метод сравнения с мерой;

- нулевой метод измерений;

- дифференциальный метод измерений;

- метод измерений замещением;

- метод измерений дополнением;

- контактный метод измерений;

- бесконтактный метод измерений.

Анализ приведенных терминов показывает, что классификация методов измерений осуществлялась по разным основаниям, например, в зависимости от наличия или отсутствия в явном виде мер физической величины (гирь, концевых мер длины или др.) или от «степени уравновешивания» объекта мерами. Методы измерений замещением и дополнением фиксируют особенности МВИ, рассматриваемые с позиций взаимодействия мер и прибора сравнения. Разделение методов измерений на контактные и бесконтактные связано с особенностями конструкции чувствительных элементов прибора. Поскольку набор терминов из РМГ 29 –99 отличается от терминов в отмененном с ГОСТ 16263 –70, а в литературе широко использовались именно включенные в старый стандарт термины, мы по необходимости будем дополнять приведенный перечень.

Анализ метода измерений следует начинать с выяснения основных признаков: является он методом непосредственной оценки или методом сравнения с мерой. Фактически это единственное принципиальное деление, поскольку значительная часть терминов просто уточняет разновидности метода сравнения с мерой. Различия между двумя методами измерений заключаются в том, что метод непосредственной оценки реализуют с помощью приборов без дополнительного применения мер, а метод сравнения с мерой предусматривает обязательное использование овеществленной меры. Меры в явном виде воспроизводят с выбранной точностью физическую величину определенного (близкого к измеряемой) размера.

Метод непосредственной оценки – метод измерений, при котором значение величины определяют непосредственно по показывающему средству измерений. Метод сравнения с мерой (метод сравнения) – метод измерений, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой. При использовании метода непосредственной оценки значение измеряемой физической величины определяют непосредственно по отсчетному устройству прибора прямого действия. Суть метода непосредственной оценки, как любого метода измерения состоит в сравнении измеряемой величины с мерой, принятой за единицу, но в этом случае мера «заложена» в измерительный прибор опосредованно. Прибор осуществляет преобразование входного сигнала измерительной информации, соответствующего всей измеряемой величине, после чего и происходит оценка ее значения.

Формальное выражение для описания метода непосредственной оценки может быть представлено в следующей форме: Q = х,

где Q – измеряемая величина,

х – показания средства измерения.

Метод сравнения с мерой характеризуется тем, что прибор фактически используют для определения разности измеряемой величины и известной величины, воспроизводимой мерой. Для реализации этого метода можно использовать приборы с относительно небольшими диапазонами показаний, вплоть до вырожденной шкалы с одной нулевой отметкой. Примерами этого метода являются измерения массы на рычажных весах с уравновешиванием объекта гирями (мерами массы), измерения напряжения постоянного тока прибором-компенсатором путем сравнения с известной ЭДС нормального элемента.

Формально метод сравнения с мерой может быть описан следующим выражением:

Q = х + Хм,

где Q – измеряемая величина,

х – показания средства измерения.

Хм – величина, воспроизводимая мерой.

Примерами используемых мер являются гири, концевые меры длины или угла, эталонные резисторы и т.д. Если использовать высокоточные меры, то инструментальные составляющие погрешности можно уменьшить не только за счет точности меры, но и за счет существенного уменьшения применяемого при измерении диапазона преобразований. При измерении методом непосредственной оценки измерительное преобразование полностью соответствует измеряемой величине, что при наличии у используемого прибора мультипликативной погрешности обычно приводит к существенному снижению точности. Метод сравнения с мерой позволяет свести работу прибора сравнения к измерительному преобразованию разности измеряемой величины и величины, воспроизводимой мерой, которая существенно меньше всей измеряемой величины.

Метод сравнения с мерой реализуется в нескольких разновидностях, среди которых различают:

- дифференциальный и нулевой методы измерений,

- метод совпадений,

- метод измерений замещением и метод противопоставления,

- метод измерений дополнением.

В данном перечислении курсивом выделены термины, включенные в РМГ 29 –99.

Дифференциальный и нулевой методы отличаются друг от друга в зависимости от степени приближения размера, воспроизводимого мерой, к измеряемой величине.

Дифференциальный метод измерений (дифференциальный метод) – метод измерений, при котором измеряемая величина сравнивается с однородной величиной, имеющей известное значение, незначительно отличающееся от значения измеряемой величины, и при котором измеряется разность между этими двумя величинами.

Пример – измерения длины, выполняемые на станковом приборе с измерительной головкой при настройке по блоку концевых мер.

Фактически дифференциальный метод измерений – это метод сравнения с мерой, в котором на измерительный прибор воздействует разность измеряемой величины и известной величины, воспроизводимой мерой, что формально соответствует х ≠ 0 в выражении

Q = х + Хм.

Нулевой метод измерений (нулевой метод) – метод сравнения с мерой, в котором результирующий эффект воздействия измеряемой величины и меры на прибор сравнения доводят до нуля.

Формально это можно представить как х ≈ 0 в том же выражении Q = х + Хм из чего следует:

Q ≈ Хм.

Пример – измерения массы взвешиванием на равноплечих рычажных весах с полным уравновешиванием чашек.

Метод совпадений (по ГОСТ 16263 –70) – метод сравнения с мерой, в котором значение измеряемой величины оценивают, используя совпадение ее с величиной, воспроизводимой мерой (т.е. с фиксированной отметкой на шкале физической величины).

Для оценки совпадения можно использовать прибор сравнения или органолептику, фиксируя появление определенного физического эффекта (стробоскопический эффект, совпадение резонансных частот, плавление или застывание индикаторного вещества при достижении определенной температуры и другие физические эффекты).

В зависимости от одновременности или неодновременности воздействия на прибор сравнения измеряемой величины и величины, воспроизводимой мерой, различают метод измерений замещением и метод противопоставления.

Метод измерений замещением (метод замещения) – метод сравнения с мерой, в котором измеряемую величину замещают мерой с известным значением величины. Пример — взвешивание с поочередным помещением измеряемой массы и гирь на одну и ту же чашку весов (метод Борда).

Следует отметить, что РМГ 29 –99 представляет слишком узкую трактовку метода замещения. В другой интерпретации, особенно характерной для линейно-угловых измерений, рассматривают альтернативную пару: методы замещения и противопоставления. В таком случае метод замещения – метод сравнения с мерой, в котором известную величину, воспроизводимую мерой, после настройки прибора замещают измеряемой величиной, то есть эти величины воздействуют на прибор последовательно. Метод противопоставления – метод сравнения с мерой, в котором измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения, с помощью которого устанавливают соотношение между этими величинами.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: