Развитие нервной системы в онтогенезе.




Гаметогенез у человека

Процесс образования половых клеток называется гаметогенез. Он происходит в половых органах – гонадах. Гаметогенез имеет определенные особенности, зависящие от пола организма, в котором происходит мейоз. Формирование мужских половых клеток называется сперматогенезом, женских - оогенезом. Первичные половые клетки выделяются из желточного мешка на 27-й день развития эмбриона и мигрируют к месту, где будут образовываться половые органы. На 46-й день внутриутробного развития гонады начинают дифференцироваться и становятся либо яичниками, либо семенниками. В этот период в мужских гонадах первичные половые клетки становятся сперматогониями, которые непрерывно делятся путем митоза вплоть до периода половой зрелости. Примерно в 15-16 лет сперматогонии начинают вступать в мейоз. Предварительно они увеличиваются в размерах, превращаясь в сперматоциты I порядка, содержащие 46 удвоенных хромосом. Сперматоциты I порядка вступают в первое деление мейоза, которое заканчивается образованием сперматоцитов II порядка. Сперматоциты II порядка содержат по 23 хромосомы, состоящие из двух хроматид. После второго деления мейоза из сперматоцитов II порядка образуются сперматиды, содержащие по 23 хромосомы. В сперматидах каждая хромосома уже имеет только одну хроматиду. Сперматиды в дальнейшем приобретают некоторые структурные особенности: изменяется состояние клеточной оболочки, появляются шейка и хвост, которые будут обеспечивать движение клетки. Полностью сформировавшаяся мужская половая клетка получила название сперматозоид. Таким образом, в результате сперматогенеза из одной диплоидной сперматогонии формируется четыре равноценных гаплоидных сперматозоида. Деление сперматогониев и образование сперматозоидов продолжается вплоть до затухания деятельности гонад в старости. За весь период половой зрелости мужской организм продуцирует не менее 500 миллиардов гамет. Процесс созревания женских половых клеток (оогенез) имеет свои особенности. После первичной половой дифференцировки в женском организме образуются оогонии, которые претерпевают несколько митотических делений. Начиная со второго месяца внутриутробного развития женского плода, ряд оогоний вступают в первое деление мейоза, превращаясь в ооцит I порядка. Деление ооцитов I порядка останавливается сразу после диплотены. На этой стадии мейоз в женских гонадах прекращается на 7-м месяце внутриутробного развития плода вплоть до периода полового созревания. После рождения девочки все оставшиеся оогонии дегенерируют. В период половой зрелости, обычно ежемесячно один ооцит I порядка заканчивает первое деление мейоза, после которого образуются две разные клетки: одна большая, содержащая почти всю цитоплазму от ооцита I порядка, - ооцит II порядка, и маленькая, фактически включающая только ядро с 23 хромосомами, - первое полярное тельце. Затем ооцит II порядка вступает во второе деление мейоза. Мейоз II порядка тоже приводит к возникновению двух неравных гаплоидных клеток: крупной – яйцеклетки, и маленькой – второго полярного тельца. В оогенезе мейоз II порядка заканчивается в момент оплодотворения, т. е. проникновения сперматозоида в цитоплазму яйцеклетки. После проникновения сперматозоида в яйцеклетку в течение нескольких часов не происходит слияния женского и мужского гаплоидных наборов хромосом, хотя они сразу окружаются общей ядерной мембраной. Этот период является очень чувствительным ко всем внешним повреждающим воздействиям. После слияния женского и мужского наборов хромосом образуется клетка, называемая зиготой. Зигота начинает делиться путем обычного митоза, образуется новый организм.

 


 

Этапы эмбриогенеза

Эмбриогенез (греч. embryon - зародыш, genesis - развитие) - ранний период индивидуального развития организма от момента оплодотворения (зачатия) до рождения, является начальным этапом онтогенеза (греч. ontos - существо, genesis - развитие), процесса индивидуального развития организма от зачатия до смерти.


Развитие любого организма начинается в результате слияния двух половых клеток (гамет), мужской и женской. Все клетки тела, несмотря на различия в строении и выполняемых функциях, объединяет одно - единая генетическая информация, хранящаяся в ядре каждой клетки, единый двойной набор хромосом (кроме узкоспециализированных клеток крови - эритроцитов, которые не имеют ядра). То есть, все соматические (сома - тело) клетки диплоидны и содержат двойной набор хромосом - 2 n, и лишь половые клетки (гаметы), формирующиеся в специализированных половых железах (семенниках и яичниках), содержат одинарный набор хромосом - 1 n.

При слиянии половых клеток образуется клетка - зигота, в которой восстанавливается двойной набор хромосом.


Образовавшаяся зигота начинает делиться. I этап деления зиготы называется дроблением, в результате которого образуется многоклеточная структура морула (тутовая ягода). Цитоплазма распределяется между клетками неравномерно, клетки нижней половины морулы крупнее, чем верхней. По объему морула сравнима с объемом зиготы.

На II этапе деления, в результате перераспределения клеток, образуется однослойный зародыш - бластула, состоящий из одного слоя клеток и полости (бластоцель). Клетки бластулы различаются между собой по размерам.

На III этапе, клетки нижнего полюса впячиваются (инвагинируют) вовнутрь, и образуется двухслойный зародыш - гаструла, состоящий из наружного слоя клеток - эктодермы и внутреннего слоя клеток - энтодермы.

Очень скоро между I и II слоями клеток формируется в результате деления клеток, еще один слой клеток, средний - мезодерма, и зародыш становится трехслойным. На этом завершается стадия гаструлы.

Из этих трех слоев клеток (их называют зародышевыми слоями) формируются ткани и органы будущего организма. Из эктодермы развивается покровная и нервная ткань, из мезодермы - скелет, мышцы, кровеносная система, половые органы, органы выделения, из энтодермы - органы дыхания, питания, печень, поджелудочная железа. Многие органы формируются из нескольких зародышевых слоев.

 

Эмбриогенез человека

 

Эмбриогенез всех позвоночных, в том числе и человека, можно разделить на три периода.
1. Дробление: оплодотворенное яйцо, spermovium, или зигота последовательно делится на клетки (2,4,8,16 и так далее) в результате чего сначала образуется плотный многоклеточный шар, морула, а затем однослойный пузырек – бластула, которая содержит в середине первичную полость, бластоцель. Длительность этого периода – 7 дней.
2. Гаструляция заключается в превращении однослойного зародыша в двух-, а позже трехслойный – гаструлу. Первые два слоя клеток называются зародышевыми листками: внешний эктодерма и внутренний энтодерма (до двух недель после оплодотворения), а возникающий позже между ними третий (средний) слой получает название среднего зародышевого листка - мезодермы. Вторым важным результатом гаструляции у всех хордовых является возникновение осевого комплекса зачатков: на дорсальной (спинной) стороне энтодермы возникает зачаток спинной струны, хорды, а на вентральной (брюшной) ее стороне – зачаток кишечной энтодермы; на дорзальной стороне зародыша, по средней линии его из эктодермы выделяется нервная пластинка – зачаток нервной ситеми, а остальная эктодерма идет на построение эпидермиса кожи и потому называется кожной эктодермой.
В дальнейшем зародыш растет в длину и превращается в цилиндрическое образование с головным (краниальним) и хвостовым каудальным концами. Этот период длится до конца третьей недели после оплодотворения.

3. Органогенез и гистогенез: нервная пластинка погружается под эктодерму и превращается в нервную трубку, которая состоит из отдельных сегментов – невротомов, – и дает начало развитию нервной системы. Мезодермальные зачатки отшнуровываются от энтодермы первичной кишки и образуют парный ряд метамерно размещенных мешков, которые, разрастаясь по бокам от тела зародыша, делятся каждый на два отдела: спинной, что лежит по бокам от хорды и нервной трубки, и брюшной, что лежит по бокам от кишки. Спинные отделы мезодермы образуют первичные сегменты тела – сомиты, каждый из которых в свою очередь делится на склеротом, который дает начало скелету и миотом, из которого развивается мускулатура. Из сомита (на боковой его стороне) выделяется также кожный сегмент – дерматом. Брюшные отделы мезодермы, которые называются спланхнотомами, образуют парные мешки, которые содержат вторичную полость тела.
Кишечная энтодерма, которая осталась после обособления хорды и мезодермы, образует вторичную кишку – основание для развития внутренних органов. В последующем закладываются все органы тела, материалом для построения которых служат три зародышевых листка.

1. Из внешнего зародышевого листка, эктодермы, развиваются:

а) эпидермис кожи и его производные (волосы, ногти, кожные железы);
б) эпителий слизистой оболочки носа, рта и заднего прохода;
в) нервная система и эпителий органов чувств.

2. Из внутреннего зародышевого листка, энтодермы, развивается эпителий слизистой большей части пищеварительного тракта со всеми принадлежащими сюда железистыми структурами, большей части дыхательных органов, а также эпителий щитовидной и зобной желез.

3. Из среднего зародышевого листка, мезодермы, развивается мускулатура скелета, мезотелий облочек серозных полостей с зачатками половых желез и почек.
Кроме того, из спинных сегментов мезодермы возникает эмбриональная соединительная ткань, мезенхима, которая дает все виды соединительной ткани, в том числе хрящевую и костную. Так как сначала мезенхима проводит питательные вещества к разным участкам зародыша, выполняя трофическую функцию, то позже из нее развиваются кровь, лимфа, кровеносные сосуды, лимфатические узлы, селезенка.
Кроме развития самого зародыша, необходимо учитывать также образование внезародышевых частей, с помощью которых эмбрион получает необходимые для его жизни питательные вещества.

С помощью трофобласта зародыш проникает в толщу слизистой оболочки матки (вживление), и здесь начинается образование особенного органа, с помощью которого устанавливается связь зародыша с телом матери и осуществляется его питание. Этот орган называется детским местом, пометом, или плацентой. Млекопитающие, которые имеют плаценту называются плацентарными. Рядом с образованием плаценты идет процесс обособления зародыша, который развивается, от внезародышевых частей в результате возникновения так называемой туловищной складки, которая, вдаваясь гребнем к середине, будто отшнуровывает кольцом тело зародыша от внезародышевых частей. При этом, однако, сохраняется соединение с плацентой с помощью пупочного стебля, который дальше превращается в пупочный канатик. На ранних стадиях развития в последнем проходит желточная протока, которая соединяет кишку с ее выпячиванием в внезародышевый участок, – желточный мешок. У позвоночных, которые не имеют плаценты желточный мешок содержит питательный материал яйца – желток и является важным органом, через который осуществляется питание зародыша.

У человека желточный мешок хотя и возникает, но заметную роль в развитии зародыша не играет и после всасывания его содержимого постепенно редуцируется. В пупочном канатике проходят также пупочные (плацентарные) сосуды, через которые течет кровь от плаценты в тело зародыша и назад. Они развиваются из мезодермы мочевого мешка, или алантоиса, который выпирается из вентральной стенки кишки и выходит из тела зародыша через пупочное отверстие во внезародышевую часть. У человека из части алантоиса, что содержится в середине тела зародыша, образуется часть мочевого пузыря, а из его сосудов образуются пупочные кровеносные сосуды. Зародыш, который развивается, покрыт двумя зародышевыми оболочками. Внутренняя оболочка, амнион, образует объемистый мешок, который наполнен белковой жидкостью и образует жидкую среду для зародыша, через что мешок называют водной оболочкой. Весь зародыш вместе с амниотичным и желточным мешками окружен внешней оболочкой (в состав которой входит и трофобласт). Эта оболочка, имея ворсинки, называется ворсинчатой, или хорион. Хорион выполняет трофическую, дыхательную, выделительную и барьерную функции.

Развитие нервной системы в онтогенезе.

Пренатальный период онтогенеза начинается с момента слияния мужских и женских половых клеток и образования зиготы. Зигота последовательно делится, образуя шаровидную бластулу. На стадии бластулы идет дальнейшее дробление и образование первичной полости — бластоцеля.

Затем начинается процесс гаструляции, в результате которого происходит перемещение клеток различными способами в бластоцель, с образованием двухслойного зародыша. Наружный слой клеток называется эктодерма, внутренний — энтодерма.

Рис. 12. Закладка нервной трубки (схематичное изображение и вид на поперечном срезе):А—А'— уровень поперечного среза; а — начальный этап погружения медуллярной пластинки и формирования нервной трубки: 1 — нервная трубка; 2 — ганглиозная пластина; 3 — сомит; б — завершение образования нервной трубки и погружение ее внутрь зародыша: 4 — эктодерма; 5 — центральный канал; 6 — белое вещество спинного мозга; 7 — серое вещество спинного мозга; 8 — закладка спинного мозга; 9 — закладка головного мозга

 

Внутри образуется полость первичной кишки — гастроцель. Это стадия гаструлы.

На стадии нейрулы образуются нервная трубка, хорда, сомиты и другие эмбриональные зачатки.

Зачаток нервной системы начинает развиваться еще в конце стадии гаструлы. Клеточный материал эктодермы, расположенный на дорсальной поверхности зародыша, утолщается, образуя пластинку которая ограничивается с боков валиками. Дробление клеток пластинки и валиков приводит к изгибанию пластинки в желоб, а затем к смыканию его краев и образованию нервной трубки.

Рис. 13. Пренатальное развитие нервной системы человека:

1 — нервный гребень; 2 — нервная пластина; 3 — нервная трубка; 4 — эктодерма; 5 — средний мозг; 6 — спинной мозг; 7 — спинномозговые нервы; 8 — глазной пузырек; 9 — передний мозг; 10 — промежуточный мозг; 11 — мост; 12 — мозжечок; 13 — конечный мозг

Одновременно происходит погружение нервной трубки внутрь зародыша. Однородные первичные клетки стенки трубки дифференцируются на первичные нервные клетки (нейробласты) и исходные клетки нейроглии.

Клетки внутреннего, прилежащего к полости трубки, слоя выстилают просвет полостей мозга.

Все первичные клетки активно делятся, увеличивая толщину стенки мозговой трубки и уменьшая просвет нервного канала.

Нейробласты дифференцируются на нейроны. При дифференцировке нейробластов отростки удлиняются и превращаются в дендриты и аксон, которые на данном этапе лишены миелиновых оболочек.

Миелинизация начинается с пятого месяца пренатального развития и полностью завершается лишь в возрасте 5—7 лет.

На пятом же месяце появляются синапсы.

Миелиновая оболочка формируется в пределах ЦНС олигодендроцитами, а в периферической нервной системе — Шванновскими клетками.

В первые месяцы постнатального онтогенеза продолжается интенсивный рост аксонов и дендритов и резко возрастает количество синапсов в связи с развитием нейронных сетей.

Эмбриогенез головного мозга начинается с развития в передней части мозговой трубки двух первичных мозговых пузырей, возникающих в результате неравномерного роста стенок нервной трубки.

Затем в начале четвертой недели у зародыша второй пузырь делится на средний и ромбовидный пузыри.

Схема - головной мозг эмбриона: I - стадия трёх мозговых пузырей; II -стадия образования пяти отделов мозга (II).

В нижней части переднего мозга выпячиваются обонятельные лопасти (из них развиваются обонятельный эпителий носовой полости, обонятельные луковицы и тракты). Из дорсолатеральных стенок переднего мозгового пузыря выступают два глазных пузыря. В дальнейшем из них развиваются сетчатка глаз, зрительные нервы и тракты.

На шестой неделе эмбрионального развития передний и ромбовидный пузыри делятся каждый на два и наступает пятипузырная стадия.

Передний пузырь — конечный мозг — разделяется продольной щелью на два полушария. Полость также делится, образуя боковые желудочки. Мозговое вещество увеличивается неравномерно, и на поверхности полушарий образуются многочисленные складки — извилины, отделенные друг от друга более или менее глубокими бороздами и щелями.

Каждое полушарие разделяется на четыре доли. Из мезенхимы, окружающей мозг зародыша, развиваются оболочки мозга. Серое вещество располагается и на периферии, образуя кору больших полушарий, и в основании полушарий, образуя подкорковые ядра.

Задняя часть переднего пузыря остается неразделенной и называется теперь промежуточным мозгом. Функционально и морфологически он связан с органом зрения. На стадии, когда границы с конечным мозгом слабо выражены, из базальной части боковых стенок образуются парные выросты — глазные пузыри, которые соединяются с местом их происхождения при помощи глазных стебельков, впоследствии превращающихся в зрительные нервы.

Наибольшей толщины достигают боковые стенки промежуточного мозга, которые преобразуются в зрительные бугры, или таламус. В вентральной области (гипоталамус) образуется непарное выпячивание — воронка, из нижнего конца которой происходит задняя мозговая доля гипофиза — нейрогипофиз.

Третий мозговой пузырь превращается в средний мозг, который развивается наиболее просто и отстает в росте. Стенки его утолщаются равномерно, а полость превращается в узкий канал — Сильвиев водопровод, соединяющий III и IV желудочки. Из дорсальной стенки развивается четверохолмие, а из вентральной — ножки среднего мозга.

Ромбовидный мозг делится на задний и добавочный. Из заднего формируется мозжечок — сначала червь мозжечка, а затем полушария, а также мост. Добавочный мозг превращается в продолговатый мозг. Стенки ромбовидного мозга утолщаются — как с боков, так и на дне, только крыша остается в виде тончайшей пластинки.

В результате неравномерного развития мозговых пузырей мозговая трубка начинает изгибаться.

Рис. 14. развитие головного мозга.

Постнатальный онтогенез нервной системы человека начинается с момента рождения ребенка. Головной мозг новорожденного весит 300 - 400 г. Вскоре после рождения прекращается образование из нейробластов новых нейронов, сами нейроны не делятся. Однако к восьмому месяцу после рождения вес мозга удваивается, а к 4 - 5 годам утраивается. Масса мозга растет в основном за счет увеличения количества отростков и их миелинизации. Максимального веса мозг мужчин достигает к 20 - 29 годам, а женщин к 15 - 19. После 50 лет мозг уплощается, вес его падает и в старости может уменьшиться на 100 г.

У новорожденного вес спинного мозга 10 г, а отношение спинного мозга к головному 1:100 (у взрослых 1:49). В первый год жизни спинной мозг растет быстро, а дифференцировка его нейронов слабо выражена. Проводящие пути и спинномозговые нервы не покрыты миелиновой оболочкой. Отсюда широкая иррадиация возбуждения по сегментам спинного мозга.

На втором этапе развития ребенка рост спинного мозга отстает от позвоночника. В результате этого сегменты спинного мозга, в нижнем его отделе, перестают соответствовать по проекции позвонкам. Вес его достигает 14 г. На этом этапе заканчивается миелинизация всех спинномозговых нервов и восходящих (афферентных) проводящих путей. Эфферентные проводящие пути еще не полностью покрыты миелиновой оболочкой. Следствием этого является неточность координации спинномозговых рефлексов. Так, например, в два года нет еще дифференцировки ходьбы от бега. Ребенок быстро перебирает ногами, шаги у него короткие. Только к концу этапа наступает дифференцировка ходьбы от бега и улучшается координация спинномозговых рефлексов.

Полностью заканчивается развитие спинного мозга на 3 этапе развития.

Продолговатый и задний мозг растут быстро. Все основные центры заднего мозга сформированы на первом году жизни. Однако их функция еще не совершенна, так как их регуляция осуществляется в основном за счет безусловных рефлексов, т.е. по принципу отклонения.

К концу 3 года его нейроны приобретают форму взрослого человека и отличаются только размерами (тела нейронов еще меньше, а аксоны и дендриты короче, чем у взрослых), поэтому их функции почти как у взрослых.

Мозжечок у новорожденного весит 20 г, а к концу года – 90 г. Червь растет быстрее полушарий. В коре полушарий как и у взрослых 3 слоя клеток, но они меньше чем у взрослых. Дифференцировка слоев начинается с первых месяцев после рождения, но к концу года еще остается много не дифференцированных нейронов. Поэтому функции мозжечка не совершенны, движения не координированы, так как нет точного согласования скорости сокращения различных мышц.

Начиная со второго этапа развития мозжечок растет равномерно, его клетки заканчивают дифференцировку и заканчивают свое развитие на 3 этапе развития.

Средний мозг по отношению к взрослым у новорожденного составляет 40%, к третьему году – 50%. Нейроны четверохолмия не дифференцированы. Функции среднего мозга не совершенны, движения не точны из-за несогласованности двигательного и тонического компонентов. Поздно-тонические, выпрямительные и стато-кинетические рефлексы не координированы. У новорожденного глазные яблоки могут даже двигаться одновременно в разные стороны. Сторожевые рефлексы (зрительные и слуховые ориентировочные рефлексы) слабо выражены и не точны. Отсутствует координация сокращений и перераспределения тонуса мышц пальцев рук.

На третьем этапе развития ребенка средний мозг составляет 90% от взрослого. Заканчивается дифференцировка почти всех его отделов. Однако, наблюдается несовершенство в координации движений пальцев рук и ребенку с большим трудом даются такие двигательные навыки как рисование, письмо, т.е. двигательные навыки требующие точной дифференцировки в движениях пальцев рук.

Ретикулярная формация ствола мозга занимает относительно меньший объем, чем у взрослых. Нейроны в ней расположены более тесно, их аксоны не покрыты миелиновой оболочкой. Многие нейроны еще не закончили своей дифференцировки. Активация больших полушарий слабая и их возбудимость понижена (новорожденный спит до 22 часов в сутки). Заканчивается дифференцировка нейронов ретикулярной формации на 3 этапе развития.

Промежуточный мозг растет относительно медленно. Так, размеры зрительных бугров составляют только 50% от взрослого. Нет еще дифференцировки переключающих и ассоциативных ядер. Нет миелинизации проводящих путей. Отсюда несовершенны функции промежуточного мозга. Нет четкости в передаче информации в кору больших полушарий, отсутствует контроль со стороны высших вегетативных центров, имеется несовершенство терморегуляции.

На втором этапе развития в зрительных буграх происходит дифференцировка нейронов на две группы ядер:

      1. переключающие ядра;
      2. ассоциативные ядра.

Афферентные пути от переключающих ядер к сенсорным зонам коры больших полушарий полностью покрыты миелиновой оболочкой, а афферентные пути от ассоциативных ядер к ассоциативным зонам больших полушарий еще не полностью покрыты миелиновой оболочкой. Отсюда несовершенен еще корковый анализ и синтез, особенно комплексных раздражителей. Неспецифические ядра зрительных бугров еще недифференцированы. Отсюда у детей этого этапа развития активное внимание практически отсутствует.

В гипоталамусе внутри ядер нейроны не полностью дифференцированы, их аксоны не покрыты миелиновой оболочкой, поэтому сохраняется несовершенство контроля над вегетативной нервной системой.

Завершается формирование промежуточного мозга к концу 4 этапа развития.

Подкорковые ядра составляют 20% по отношению к взрослым. Дифференцировка нейронов слабая, миелинизация проводящих путей неполная. Несовершенство функций проявляется в неловкости двигательных актов. К третьему этапу развития подкорковые ядра составляют 80% от взрослых и завершают свое развитие к концу 4 этапа.

Большие полушария. Формообразование больших полушарийна первом году жизни идет медленными темпами, и они по своей форме значительно отличаются от взрослого человека. Так, у детей первого года жизни слабо развит лобный отдел больших полушарий, борозды и извилины малы, мелки. Особенно плохо выражены борозды третьего порядка.

На II этапе поверхность больших полушарий становится похожей на таковую у взрослого человека.

Замедлена на первом этапе развитие и дифференцировка нейронов коры головного мозга. Хотя в коре больших полушарий уже у новорожденного имеется такое же количество нейронов (15 млрд.), как и у взрослого, но на протяжении почти всего 1 этапа развития форма нейронов остается несовершенной. Большинство нейронов имеют овальную форму со слабо выраженными дендритами и короткими аксонами. В связи с этим у новорожденного нет деления нейронов на слои и только к концу первого года жизни в коре больших полушарий начинают определяться 6 слоев нейронов, отличающихся друг от друга, как по форме, так и по размерам. Нейроны приобретают форму типичную для нейронов коры больших полушарий взрослого человека (пирамидную, звездчатую, треугольную, веретенообразную и т.д.). Однако корковые нейроны еще несколько меньших размеров, чем у взрослых, их дендриты еще коротки, а аксоны не покрыты миэлиновой оболочкой.

На III этапе заканчивается дифференцировка тел и дендритов корковых нейронов. Однако их аксоны еще не полностью покрыты миелиновой оболочкой. Хотя на этом этапе развития и устанавливаются связи между слоями коры больших полушарий, однако передача информации из одного слоя в другой не совершена, так как не все аксоны покрыты миелиновой оболочкой. Не покрыты миелиновой оболочкой и ассоциативные пути, соединяющие ассоциативные зоны больших полушарий, следовательно, не совершенен корковый анализ и синтез. Сенсорные и моторные зоны больших полушарий развиты почты также, как и у взрослых, а ассоциативные и моторные зоны на 80% по сравнению со взрослыми.

В связи с незрелостью коры больших полушарий, функция ее несовершенна, контроль над подкорковыми образованиями слабый. Так, новорожденный 22 часа в сутки спит, т.е. большую часть суток кора вообще не функционирует. Отсутствие корковых влияний на сегменты спинного мозга в первые месяцы жизни ребенка приводит к хаотичности движений (ребенка пеленают). Только со 2-3-го месяца жизни кора больших полушарий начинает более или менее оказывать постоянные регулирующие влияния на подкорковые образования. Однако эти влияния еще слабы, несовершенны.

На IIэтапе развития морфологическое и функциональное созреванием нейронов больших полушарии значительно совершенствуется. Так, благодаря корковому контролю над спинным мозгом более совершенными становятся произвольные движения (ребенок ходит, бегает, прыгает и т.д.). Достаточно хорошо развиты на этом этапе анализаторы, в том числе и дистантные (зрительный, слуховой и обонятельный). Быстро начинают образовываться временные связи во второй сигнальной системе и к концу 3-го года жизни ребенок знает уже около 1 000 слов.

Однако кора больших полушарий на II этапе развития ребенка все еще остается функционально недоразвитой, контроль ее над нижележащими отделами ЦНС несовершенен. Особенно это касается эмоциональной сферы ребенка. Ребенок "живет чувствами" (смеется на похоронах, плачет в гостях и т.д.).

Функциональная незрелость коры больших полушарий проявляется и в относительной слабости процессов торможения и в относительной легкости иррадиации процессов возбуждения (ребенок быстро перевозбуждается во время игры, плохо засыпает, спит беспокойно и т.д.). На IIIэтапе развития нет еще контроля коры над эмоциями (можно узнать правду "по глазам").

Поскольку некоторые ученые функцию мышления связывают с лобными долями и, в частности, с 3-м слоем коры больших полушарий, а также с ассоциативными зонами больших полушарий, можно говорить о морфологической и, следовательно, функциональной незрелости больших полушарий на IV этапе развития ребенка, о несовершенстве коркового анализа и синтеза. Как известно, в этом возрасте мышление у детей все еще остается конкретным, хотя они уже и начинают пользоваться абстрактными понятиями. То, что взрослому кажется "само собой разумеющимся", "само собой вытекающим...", для ребенка 7-10 лет может быть непонятным.

Отсюда преподавание должно строиться не только на словесном логическом доказательстве, но обязательно с использованием наглядностей (таблицы, рисунки, модели, опыты и т.д.), с обязательным знакомством ребенка с конкретными явлениями и предметами.

В связи с функциональной незрелостью корковых нейронов наблюдается и их относительная малая работоспособность. Наряду с этим наблюдается преобладание процессов возбуждения над процессами торможения, легкая и широкая иррадиация возбуждения. Концентрация же возбуждения и торможения затруднена. Так, например, продолжительность активного внимания (которое физиологически можно представить как концентрированный очаг возбуждения с индуцированным вокруг него торможением) в 7-8 лет равна 15-20 мин., а в 9-10 лет 20-25 мин.

Младшие школьники легко возбуждаются и перевозбуждаются во время перемен и долго не могут успокоиться в начале следующего урока. В связи с относительной слабостью процессов торможения, для младшего школьника неподвижно сидеть во время урока в течение 45 мин. - это большой нервный труд. Поэтому во время перемены детям необходимо давать разрядку, снимать торможение с двигательной зоны больших полушарий, т.е. дать возможность младшим школьникам побегам, поиграть в подвижные игры. Однако при этом надо следить, чтобы они не перевозбудились.

На IV этапе кора больших полушарий берет под контроль эмоции (уже нельзя узнать правду "по глазам"). Совершенствуется мышление, которое становится словесным с использованием абстрактных понятий.

Только к 13-16 годам заканчивается миелинизация ассоциативных путей. Усиливаются процессы торможения, совершенствуется концентрация процессов возбуждения и торможения.

Так, например, продолжительность активного внимания в этом возрасте достигает 30-40 мин.

К 17 -18 годам морфологическое развитие больших полушарий оканчивается, но функциональное совершенствование продолжается и у взрослых людей. Так, большинство ученых считают, что функциональное совершенствование больших полушарий продолжается до 50-60 лет

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: