Химическая природа воды и ее память (структура, свойства, состав воды)




 

Вода представляет собой важнейшее химическое соединение, определяющее возможность существования жизни на Земле. Ежедневное потребление человеком питьевой воды составляет в среднем около 2 л, а общее потребление воды на душу населения в развитых странах составляет 150 - 300 л в день. Содержание воды в организме новорожденного составляет 97%, с возрастом снижаясь до 70 - 75%, в частности, в мозге содержится около 85% воды. При этом, несмотря на одинаковую молекулярную формулу Н2О, структура и физико-химические свойства содержащейся в живых системах воды существенно отличаются от аналогичных показателей воды, которую мы используем каждый день. Ярким примером этого служит тот факт, что вода внутри клеток животных и растений не замерзает при температурах до - 50°С и ниже (подробнее об этом в последующих разделах). Важнейшим свойством воды является ее необычайно высокая чувствительность к различным физико-химическим и энергоинформационным воздействиям за счет наличия низкоэнергетических водородных связей, способных перестроиться под действием разнообразных внешних воздействий, не требующих больших затрат энергии.

Таким образом, можно утверждать, что воздействие на воду непосредственно связано с влиянием на живые системы, в частности, на человеческий организм. На протяжении многих веков эти эффекты использовали и продолжают в настоящее время применять в различных оккультных, парапсихологических и магических методах, таких как лечение различных заболеваний "заряженной" водой, избавление от алкогольной зависимости, наведение порчи, приворот и т.д. Представляет большой интерес выяснение реальности подобного рода явлений, их механизма и связи со структурой и свойствами воды, а также влияния на воду и водные системы электромагнитных полей и других внешних факторов, не связанных непосредственно с изменением химического состава воды и водных растворов.

Питьевая вода из под крана сильна загрязнена пестицидами, гербицидами, нитратами, нитритами, тяжелыми металлами, полициклическими ароматическими углеводородами, причем на содержание этих веществ установлены предельно допустимые значения, которые не должны превышаться. Используемые для биологической и химической очистки вещества должны по возможности удаляться из воды водоснабжающим предприятием.

И хотя эти химические вещества отфильтровываются, в воде остаются их следы (информация), которые отрицательно воздействуют на организм, из чего каждому становится ясным, что все водные фильтры сами по себе недостаточны, так как они способны удалять только вредные химические твердые вещества, но не отрицательную информацию, носителем которой являются сами макромолекулы воды.

Свойства воды

Самым удивительным веществом в природе можно назвать простую и обычную воду. Она обладает такими свойствами, которые не характерны для любых других известных соединений кислорода с водородом. Например, закипает при температуре плюс 100° С, тогда как максимальная температура кипения, например, сероводорода минус 61° С. Кроме того, вопреки всем законам физики, теплоемкость воды при нагревании (от 0 до 37) не повышается, а понижается. И, конечно же, всем известно, что при обработке магнитным полем, вода изменяет свою биологическую активность. Есть даже понятие «заговоренная» вода. Под влиянием молитв и заговоров она может творить чудеса. Недаром в сказках, вода делиться на два вида «живая», от которой проходят все болезни, от которой можно ожить, и «мертвая», которая убивает любого, кто ее отведает.

Все знают о важности воды в нашем организме. Присутствуя во всех клетках и тканях, играя главную роль во всех биологических процессах от пищеварения до кровообращения, вода выполняет много важных функций.

Вода должна стать для вас самым ключевым ингредиентом, если вы стремитесь иметь здоровое тело и отличное самочувствие. Ничто так не влияет на наше здоровье, как потребление воды.

Состав воды

24 июня 1783 г. А.Лавуазье и П.Лаплас в присутствии группы своих коллег-ученых «сделали» воду из кислорода и водорода. Воду они получили как продукт сгорания водорода (а то, что в процессе горения участвует кислород – «огненный ВОЗДУХ», стало известно чуть раньше). При этом вес образовавшейся воды равнялся весу водорода и кислорода, участвовавших в реакции горения.

Вот так в один день стало ясно, что вода - не простои элемент, а сложное вещество, но какой долгий и трудный путь вел к этому знаменательному дню, сколько огорчении, разочарований, ошибок и личных трагедий пережили естествоиспытатели, пока вода наконец-то раскрыла свою природу.

Структура воды

Молекула воды представляет собой маленький диполь, содержащий положительный и отрицательный заряды на полюсах. Так как масса и заряд ядра кислорода больше чем у ядер водорода, то электронное облако стягивается в сторону кислородного ядра. При этом ядра водорода “оголяются”. Таким образом, электронное облако имеет неоднородную плотность. Около ядер водорода имеется недостаток электронной плотности, а на противоположной стороне молекулы, около ядра кислорода, наблюдается избыток электронной плотности. Именно такая структура и определяет полярность молекулы воды. Если соединить прямыми линиями эпицентры положительных и отрицательных зарядов получится объемная геометрическая фигура - правильный тетраэдр.

Благодаря наличию водородных связей каждая молекула воды образует водородную связь с 4-мя соседними молекулами, образуя ажурный сетчатый каркас в молекуле льда. Однако, в жидком состоянии вода – неупорядоченная жидкость; эти водородные связи - спонтанные, короткоживущие, быстро рвутся и образуются вновь. Всё это приводит к неоднородности в структуре воды.

То, что вода неоднородна по своему составу, было установлено давно. С давних пор известно, что лёд плавает на поверхности воды, то есть плотность кристаллического льда меньше, чем плотность жидкости.

В 1999 г. известный российский исследователь воды С.В. Зенин защитил в Институте медико-биологических проблем РАН докторскую диссертацию, посвященную кластерной теории, которая явилась существенным этапом в продвижении этого направления исследований, сложность которых усиливается тем, что они находятся на стыке трех наук: физики, химии и биологии. Им на основании данных, полученных тремя физико-химическими методами: рефрактометрии (С.В. Зенин, Б.В. Тяглов, 1994), высокоэффективной жидкостной хроматографии (С.В. Зенин с соавт., 1998) и протонного магнитного резонанса (С.В. Зенин, 1993) построена и доказана геометрическая модель основного стабильного структурного образования из молекул воды (структурированная вода), а затем (С.В. Зенин, 2004) получено изображение с помощью контрастно-фазового микроскопа этих структур.

Структурные исследования воды можно изучать разными методами; спектроскопией протонного магнитного резонанса, инфракрасной спекроскопии, дифракцией рентгеновских лучей и др. Например, дифракцию рентгеновских лучей и нейтронов в воде изучали много раз. Однако подробных сведений о структуре эти эксперименты дать не могут. Неоднородности, различающиеся по плотности, можно было бы увидеть по рассеянию рентгеновских лучей и нейтронов под малыми углами, однако такие неоднородности должны быть большими, состоящими из сотен молекул воды. Можно было бы их увидеть, и исследуя рассеяние света. Однако вода — исключительно прозрачная жидкость. Единственный же результат дифракционных экспериментов — функции радиального распределения, то есть расстояния между атомами кислорода, водорода и кислорода-водорода. Из них видно, что никакого дальнего порядка в расположении молекул воды нет. Эти функции для воды затухают гораздо быстрее, чем для большинства других жидкостей. Например, распределение расстояний между атомами кислорода при температуре, близкой к комнатной, даёт только три максимума, на 2,8, 4,5 и 6,7 A. Первый максимум соответствует расстоянию до ближайших соседей, и его значение примерно равно длине водородной связи. Второй максимум близок к средней длине ребра тетраэдра — вспомним, что молекулы воды в гексагональном льду располагаются по вершинам тетраэдра, описанного вокруг центральной молекулы. А третий максимум, выраженный весьма слабо, соответствует расстоянию до третьих и более далёких соседей по водородной сетке. Этот максимум и сам не очень ярок, а про дальнейшие пики и говорить не приходится. Были попытки получить из этих распределений более детальную информацию. Так в 1969 году И.С. Андрианов и И.З. Фишер нашли расстояния вплоть до восьмого соседа, при этом до пятого соседа оно оказалось равным 3 A, а до шестого — 3,1 A. Это позволяет делать данные о дальнем окружении молекул воды.

Другой метод исследования структуры – нейтронная дифракция на кристаллах воды осуществляется точно также, как и рентгеновская дифракция. Однако из-за того, что длины нейтронного рассеяния различаются у разных атомов не столь сильно, метод изоморфного замещения становится неприемлемым. На практике обычно работают с кристаллом, у которого молекулярная структура уже приблизительно установлена другими методами. Затем для этого кристалла измеряют интенсивности нейтронной дифракции. По этим результатам проводят преобразование Фурье, в ходе которого используют измеренные нейтронные интенсивности и фазы, вычисляемые с учётом неводородных атомов, т.е. атомов кислорода, положение которых в модели структуры известно. Затем на полученной таким образом фурье-карте атомы водорода и дейтерия представлены с гораздо большими весами, чем на карте электронной плотности, т.к. вклад этих атомов в нейтронное рассеяние очень большой. По этой карте плотности можно, например, определить положения атомов водорода (отрицательная плотность) и дейтерия (положительная плотность).

Возможна разновидность этого метода, которая состоит в том, что кристалл образовавшийся в воде, перед измерениями выдерживают в тяжёлой воде. В этом случае нейтронная дифракция не только позволяет установить, где расположены атомы водорода, но и выявляет те из них, способные обмениваться на дейтерий, что особенно важно при изучение изотопного (H-D)-обмена. Подобная информация помогает подтвердить правильность установления структуры.

Другие методы также позволяют изучать динамику молекул воды. Это эксперименты по квазиупругому рассеянию нейтронов, сверхбыстрой ИК-спектроскопии и изучение диффузии воды с помощью ЯМР или меченых атомов дейтерия. Метод ЯМР-спектроскопии основан на том, что ядро атома водорода имеет магнитный момент — спин, взаимодействующий с магнитными полями, постоянными и переменными. По спектру ЯМР можно судить о том, в каком окружении эти атомы и ядра находятся, получая, таким образом, информацию о структуре молекулы.

Для анализа структуры воды выбираются три параметра:

- степень отклонения локального окружения молекулы от вершин правильного тетраэдра;

-потенциальная энергия молекул;

-объём так называемого многогранника Вороного.

Итак, среди существующих в природе жидкостей вода обладает наибольшей теплоемкостью. Это ее качество оказывает существенное влияние на климат. Основным терморегулятором климата являются воды океанов и морей: накапливая тепло летом, они отдают его зимой. Отсутствие водоемов на местности обычно приводит к образованию резко континентального климата. Благодаря влиянию океанов на значительной части Земного пара обеспечивается перевес осадков на суше над испарением, и организмы растений и животных получают нужное им для жизни, количество воды. Водная и воздушная оболочки Земного шара постоянно обмениваются углекислотой с горными породами, растительным и животным миром, что также способствует стабилизации климата.

 


Вода, дарующая жизнь



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: