Информатика и преподавание математики




В. Г. Болтянский (Москва)

 

Появление персональных компьютеров существенно влияет на про­грамму школьного курса математики и методику его преподавания. Понятие алгоритма и логику составления несложных программ (напри­мер, на Бейсике) целесообразно изучать в конкретных предметах (ма­тематике и др.) начиная с IV—V классов. Даже в начальном курсе мате­матики имеется ряд содержательных задач, которые пробуждают ин­терес к их компьютерному решению.

Например, при выполнении действий с простыми дробями уча­щимся бывает нужно найти наименьшее общее кратное двух или не­скольких данных чисел (знаменателей дробей). Обычный прием его нахождения состоит в разложении данных чисел на простые мно­жители и перемножении наибольших степеней простых чисел, встре­чающихся в разложениях данных чисел.

Использование вычислительной техники меняет у современного человека идеологию решения математических задач. При компьютер­ном нахождении наименьшего общего кратного двух чисел B и Q проще перебирать числа, делящиеся на Q, первое встретившееся число, которое делится на В, и будет, очевидно, наименьшим общим кратным чисел В и Q. Соответствующая программа очень проста; подробнее об этом можно прочитать в статье «Простые дроби и вы­числительная техника» автора в журнале «Математика в школе» (1988, № 5). Составление такой программы вызывает больший интерес у учащихся, чем, скажем, программа для нахождения наибольше­го из двух чисел, поскольку учащимся представляется, что они «сразу видят», какое из двух чисел больше, и составление программы в этом случае кажется им ненужным формализмом. А работа на компьютере (скажем, во время часовой экскурсии в дисплейный класс) не только завершит эту деятельность, но и вызовет устойчивый интерес к ин­форматике. При этом вовсе не обязательно, чтобы каждый уча­щийся набрал составленную программу. Для начала достаточно осу­ществить ее ввод на 2—3 терминалах, чтобы школьники могли видеть на дисплее ввод чисел и появление наименьшего общего кратного.

Если рассмотренную программу расскажет (в виде объяснения) учитель, то затем можно предложить учащимся задачи на составление программ перебора для самостоятельного решения. Ряд содержа­тельных математических задач на применение программ перебора имеется в статье автора «Программы перебора» в журнале «Квант» (1988, № 1). Например, там рассматривается следующая задача.

Долгожитель (т. е. человек, проживший более 100 лет) заметил, что если к сумме квадратов цифр его возраста прибавить число его дня рождения (т. е. какое-то из чисел, 1, 2,.... 31), то получится как раз его возраст. Сколько ему лет?

Задача привлекает детей занимательностью формулировки. А для информатики она интересна тем, что на этом примере выясняется, как можно осуществить перебор всех трехзначных чисел (100, 101,.., 999) при помощи трех вложенных циклов. В результате работы компьютера по составленной программе мы узнаем, что долгожителю 109 лет.

Другими мотивами для составления программ перебора являются задача А. Н. Колмогорова о нахождении трехзначных чисел, равных сумме кубов своих цифр, задача о числе «счастливых» шестизначных билетиков и многие другие, рассмотренные в указанной статье.

В качестве еще одного примера укажем следующую задачу. Найти трехзначное число, равное сумме факториалов своих цифр. Эта задача, некогда предлагавшаяся на московской математи­ческой олимпиаде, решается «вручную» довольно скучным перебором (ответом является число 145). Естественно, удобнее осуществить пере­бор на компьютере. В программе, дающей решение этой задачи, удобно использовать индексированную переменную F (К), значение которой равно факториалу числа К (где достаточно рассмотреть зна­чения К = 0, 1,..., 9, поскольку идет речь о факториалах цифр). Еще одним уместным поводом для использования индексированных переменных является программа составления таблицы простых чисел (скажем, от 2 до 200) с помощью хорошо известного метода, назы­ваемого решетом Эратосфена. Кстати, вместо «вычеркивания» чисел, используемого в этом методе, удобно применить так называемую маску, т. е. решение этой задачи позволяет познакомить учащихся с еще одним распространенным приемом, применяемым програм­мистами.

Интересным для учащихся является составление программ про­ведения математических экспериментов, предназначенных для формирования гипотез, усвоения понятий и т. п. Например, можно составить демонстрационную программу вычисления значений выражения , которая последовательно выводит на дисплеи значения этого выражения при n = 10, 100, 1000, 10000, 100000. Это позволяет сформулировать гипотезу о существовании предела

и оценить его значение 2,7182.... Точно так же может быть с помощью компьютера сформирована гипотеза о значении предела .

Рассмотренные примеры позволяют обоснованно поставить вопрос о том, нужен ли в школе отдельный курс информатики. Практика изу­чения курса информатики в старших классах показывает, что учащимся быстро надоедает формальное составление программ по обработке данных, массивов, файлов, если это не связано с решением содер­жательных задач изучаемых ими предметов. Напротив, ненавязчивое приучение их к «пошаговому» осмыслению умственной деятельности, связанной с поиском путей решения содержательных задач, и дове­дение этого самоанализа до составления программы порождает устой­чивый интерес к работе на компьютере. Содержательные математи­ческие задачи позволяют учащимся усвоить смысл первоначальных операторов языка высокого уровня (например, Бейсика). Дальнейшие операторы, работа с файлами, вывод результатов на принтер и т. д. могут быть постепенно изучены (также при решении содержательных задач) теми из учащихся, которые захотят более глубоко овладеть элементами программирования.

Аналогичная работа на компьютере может быть проведена при изучении материала физики. Так, например, формулы , v = v 0+ at, выражающие перемещение и скорость тела (материальной точки) при прямолинейном равноускоренном движе­нии, позволяют написать соответствующую программу. Компьютер просит учащегося указать, какова начальная скорость, каково уско­рение, каково время движения, а затем сообщает значение величины конечной скорости и перемещения.

Такая же работа может быть проведена с другими формулами фи­зики, химии, математики.

Материал физики позволяет также познакомить учащихся с эле­ментами математического моделирования, что также является одной из важных задач информатики. Например, рассмотрим задачу о дви­жении шарика, падающего на стеклянную пластину и многократно подскакивающего при соударениях, если известны начальная высота шарика над пластиной и отношение величин скоростей после удара и до удара. По какому закону изменяются последовательные ампли­туды подскоков? Будут ли подскоки продолжаться неограниченно дол­го, подобно затухающим колебаниям математического маятника, или же существует момент Т, после которого, даже теоретически, под­скоки прекращаются? Как изменяются длительности колебаний — бу­дут ли они примерно одинаковыми, как в случае математического маятника, или же подскоки будут все более кратковременными? На эти вопросы можно ответить проведением компьютерного экспери­мента с показом графиков.

Другими интересными для моделирования ситуациями являются затухающие колебания маятника, охлаждение тела за счет теплообмена со средой, апериодический разряд конденсатора, падение тела в сопротивляющейся среде и др. Составление программ для осуществле­ния такого моделирования (с использованием, например, ломаных Эйлера для приближенного решения дифференциальных уравнений) несложно и доступно пониманию учащихся. В то же время это мо­делирование имеет большое воспитательное и познавательное зна­чение. После решения нескольких таких задач целесообразно расска­зать о роли компьютеров в современной науке и производстве. Компьютерное моделирование позволяет имитировать (и прогнози­ровать) космические полеты, развитие отраслей народного хозяйства, работу транспорта, спортивные соревнования.

Применение компьютеров на уроках русского или иностранного языка дает хороший повод для ознакомления с работой компью­терного редактора; кроме того, имеется ряд интересных компьютерных обучающих программ по русскому языку. При работе с такой програм­мой учащийся ведет «беседу» с компьютером, отвечает на вопросы, получает разъяснения или материал для повторения, видит общую оценку своей работы и т. д. А для тех, кто интересуется информа­тикой, это хороший повод для ознакомления с принципами построения диалоговых обучающих программ и для самостоятельного их со­ставления.

Материал истории, экономической географии и других предметов требует привлечения информационно-справочных систем, введенных в память компьютера и используемых в надлежащий момент урока. В связи с этим уместен рассказ о принципах работы компьютерных информационно-справочных систем и о приемах самостоятельного построения простых вариантов таких программ.

Общий разговор о значении вычислительной техники в современ­ной жизни и будущем обществе, о диалоговых человеко-машинных системах может быть включен в программу курса обществоведения или современной истории. Технологические беседы о современной вычислительной технике могут быть предусмотрены в курсе математики старших классов (системы счисления, логические схемы, устройство инвертора и сумматора), а также в курсе физики (полупроводниковые и интегральные схемы, физические принципы их функционирования). Наконец, для более продвинутых учащихся, проявляющих интерес к информатике, целесообразно организовать чтение спецкурсов в масштабе школы, района, города.

Изложенная модель постепенного «растворения» информатики в других предметах представляется наиболее перспективной.




Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: