Основные требования программы Tier II Plus.




БПЛА Tier II Plus должен быть способен вести продолжительную разведку на большой высоте. Он должен иметь дальность действия более 5500 км и иметь способность барражировать над районом разведки более 24-х часов на высоте более 18300 м.

Для ведения разведки должен быт оснащен радаром с синтезированной апертурой (synthetic aperture radar (SAR), электронно-оптическую и инфракрасную камеру высокого разрешения. Он также должен иметь способность одновременного применения этой аппаратуры. Из каналов связи должны иметься широкополосный спутниковый канал связи и канал связи в пределах зоны прямой видимости.

Стоимость БПЛА не должна превышать $10 млн. в ценах 1994 финансового года.

Проект фирмы Teledyne Ryan Aeronautical (TRA) БПЛА RQ-4A Global Hawk в мае 1995 года был выбран победителем в конкурсе на лучший БПЛА по программе Tier II+.

Возможности БПЛА Global Hawk вызвали большой интерес не только у американских военных, но и у военных Австралии, Великобритании, Израиля и Саудовской Аравии. Это сулит большие перспективы для фирмы Teledyne Ryan, у которой есть много других идей по применению этого "Короля БПЛА": например, он может использоваться как ретранслятор, как высотная научно-исследовательская лаборатория или как носитель противоракетного оружия для борьбы с баллистическими ракетами.

RQ-4 выполнен по нормальной аэродинамической схеме с низкорасположенным крылом большого удлинения. Крыло, производства концерна Boeing, полностью изготовлено из композиционного материала на основе углеволокна. Это позволило создать тонкое крыло с относительным удлинением 25. На крыле имеются, как минимум две, точки внешней подвески, рассчитанные на груз массой до 450 кг каждая. Шасси трехточечное с носовым колесом. На носовой стойке шасси имеется одно колесо, на подкрыльевых стойках - по два колеса. Фюзеляж типа полумонокок изготавливается фирмой Teledyne Ryan из алюминиевых сплавов. Он состоит из трех основных частей. Спереди расположен приборный отсек. Там, под большим радиопрозрачным обтекателем расположена параболическая антенна спутниковой связи диаметром 1.22 метра. В этом же отсеке размещена вся разведывательная аппаратура. В средней части находится большой топливный бак и в хвостовой части расположен реактивный турбовентиляторный двигатель Allison AE 3007H. Двигатель позаимствован, почти без изменений, у самолетов бизнес - класса Citation-X и EMB-145. После внесения небольших изменений в систему управления двигатель устойчиво работает на высотах до 21 300 метров.

V-образное хвостовое оперение, изготавливаемое фирмой Aurora Flight Sciences, также сделано из композиционных материалов.

БПЛА сам по себе это платформа для различного разведывательного оборудования. На Global Hawk устанавливаются три подсистемы разведывательной аппаратуры одновременно. Они действуют на разных длинах волн, могут работать одновременно и отличаются друг от друга следующим:

Радар с синтезированной апертурой изготовлен фирмой Raytheon (Hughes) и предназначен для работы в любых погодных условиях. В нормальном режиме работы он обеспечивает получение радиолокационного изображение местности с разрешением 1 метр. За сутки может быть получено изображение с площади 138,000 км2 на расстоянии 200 км. В точечном режиме ("spotlight" mode), съемка области размером 2 х 2 км, за 24 часа может быть получено более 1900 изображений с разрешением 0,3 м. В третьем режиме (X-Band) радар может сопровождать движущуюся цель, если ее скорость более 7 км/ч.

Две антенны радара (расположены по бокам в нижней части приборного отсека фюзеляжа, длина 1.21 м) и необходимое электронное оборудование весом 290 кг потребляют 6 кВт электроэнергии.

Дневная электронно-оптическая цифровая камера изготовлена компанией Hughes и обеспечивает получение изображений с высоким разрешением. Датчик (1024 x 1,024 пиксель) сопряжен с телеобъективом с фокусным расстоянием 1750 мм. В зависимости от программы есть два режима работы. Первый - сканирование полосы шириной 10 км. Второй - детальное изображение области 2 х 2 км. Для получения ночных изображений используется ИК-датчик (640 х 480 пиксель). Он использует тот же самый телеобъектив. Объектив может поворачиваться на угол 80 градусов.

Радар, дневная и инфракрасная камеры могут работать одновременно, что позволяет получить большой объем информации. Дневная / инфракрасная камера имеет скорость выдачи информации - 40 млн. пикселей в секунду, что составляет в зависимости от цветового разрешения 400 Мбит/сек. Бортовая система сбора и хранения информации сжимает полученные цифровые изображения и записывает их.

Для передачи информации потребителям могут быть использованы несколько каналов связи. По спутниковому каналу скорость передачи информации составляет 50 Мбит/с. Для этих целей используется спутниковая система связи Ku-диапазона (SATCOM), диаметр антенны 1.22 метра. По прямому каналу диапазона UHF можно передавать информацию со скоростью 137 Мбит/с.

Информация направляется на наземную станцию управления полетом и на станцию управления взлетом/посадкой. В будущем пользователи, не имеющие связи с наземной станцией, смогут получать изображения напрямую от БПЛА Global Hawk.

Global Hawk будет интегрирован в существующие системы тактической воздушной разведки (планирование полетов, обработка данных, эксплуатация и распространение информации). Если он будет подключен к таким системам как объединенная система обеспечения разведки (JDISS) и глобальная система командования и управления (GCCS), изображения будут передаваться оперативному командующему для немедленного использования. Данные, полученные от БПЛА, будут использоваться для обнаружения целей, для планирования ударных операций для рекогносцировки, а так же для решения иных задач.

Программа требует, чтобы БПЛА без применения стелс-технологий имел достаточно высокую выживаемость. Для самозащиты Global Hawk оснащается детектором облучения радиолокаторами AN/ALR 89 RWR и постановщиками помех. При необходимости он может использовать буксируемый постановщик помех ALE-50. Эксперименты по моделированию реальных ситуаций показали, что Global Hawk может совершить более чем 200 вылетов без повреждений, если маршрут его полета спланирован с учетом текущей обстановки (вне зон активных боевых действий). В случае опасности БПЛА может вызвать помощь, связавшись с ближайшим авиационным патрулем или самолетом AWACS.

Для повышения мобильности все наземное оборудование размещено в контейнерах или на специальных трейлерах. В состав наземного оборудования входят:

· Станция управления взлетом/посадкой

· Станция управления операциями полетом

· Трейлер с антенным оборудованием (SATCOM)

· Трейлер со спутниковой антенной

· Трейлер с кабелями

· Два генератора

· Два дополнительных генератора

· Комплект силовой аппаратуры

· Двигательный стенд с двигателем

· Комплект запчастей

· Комплект для обслуживания БПЛА

· Станция управления полетом и станция управления взлетом/посадкой размещены в отдельных контейнерах размером 2.4х2.4х7.2м и 2.4х2.4х3.25м соответственно. Для удобства перемещения контейнеры снабжены выдвигающимися колесами. Комплекс наземного оборудования БПЛА Global Hawk может транспортироваться по воздуху тремя военно-транспортными самолетами С-141В, или двумя C-17, или одним С-5В.

29 марта 1999 года в 10:14 БПЛА Global Hawk №2 во время испытательного полета потерял управление и разбился рядом с озером Searles Lake. Это произошло на высоте 12500 метров после подачи сигнала на прекращение полета с авиабазы Nellis, Невада. БПЛА начал выполнение запрограммированного маневра прекращения полета и сорвался в штопор. Эта авария затормозила выполнение программы как минимум на два месяца. Изготовление замены для разбившегося БПЛА обойдется в $30 млн. С 1994 по март 1999 года в программу Global Hawk уже вложено $280 млн.

ЛТХ:    

 

Модификация RQ-4
Размах крыла, м 35.42
Длина, м 13.53
Высота, м 4.62
Площадь крыла, м2 50.2
Масса, кг  
пустого  
взлетная  
топлива  
Тип двигателя 1 ТРДД Allison AE3007H
Тяга, кгс 1 х 3450
Максимальная скорость, км/ч  
Радиус действия, км  
Продолжительность полета, ч  
Практический потолок, м  


Цифровая радиолиния с сигналом КИМ-ЧМ

В цифровой системе передачи информации с радиосигналом КИМ-ЧМ необходимо оценить точность передачи сообщения и выб­рать основные параметры радиолинии, определяющие точность. Из­вестно, что в системе непрерывно принимаются сообщения. В приемном устройстве применяется прием “в целом”.

Необходимо знать - скорость передачи информации R (двоичных единиц в секунду), энергетический потен­циал радиолинии, закон изменения несущей частоты из-за нестабильности передатчика и движения передающего и принимающего пунктов. Предполагается также, что символы в КИМ сигнале могут считаться независимыми, а априорная вероятность появления нуля и единицы одинакова.

Рисунок 1. Функциональная схема приемника беспилотного ДПЛА

В приемном устройстве после преобразования и усиления про­исходит оптимальный прием “в целом”. Функциональные схемы оптимальных приемников приведены на Рисунок 1. Оптимальный приемник вычисляет взаимную корреляцию приня­того сигнала с каждым из возможных сигналов и выносит решение о приеме того сигнала, для которого указанная величина имеет наибольшее значение. Схема оптимального приемника содержит активных корреляторов. В этом случае имеется генератор опорных сигналов . В состав приемника входит также устройство синхронизации, с помощью которого обеспечивается синхронизация принимаемых и опорных сигналов, а также разряд интегратора после окончания кодового слова. Опорное напряжение вырабатывает система ФАП. При оценке помехоустойчивости оптимального приемника параметры входного сигнала считаются полностью известными. Такой приемник известен под названием корреляционного (или когерентного) приемника. Опорные сигналы поступают на корреляторы одновременно с принятым сигналом . Коррелятор состоит из перемножителя сигналов и интегратора. В момент окончания принятого сигнала выходное напряжение корреляторов определяется как

, ().

В качестве показателя точности основного тракта принимается вероятность неправильной оценки слова (). В качестве внешнего воздействия на систему будем рассматривать собственный шум приемника, заданный энергетическим потенциа­лом .

Для сигнала КИМ-ЧМ перемножитель сделаем необычный. Функциональная схема перемножителя представлена на Рисунок 2.

Рисунок 2. Функциональная схема перемножителя КИМ-ЧМ

Частотный детектор построен на двух разнесенных фильтрах, каждый из которых настроен на свою частоту, передающую сигналы «1» и «0» соответственно. Фильтры согласованны с формой символа сигнала так, что на выходе фильтра огибающая символа становится треугольной. Предполагается, что разнос частот, на которые настроены фильтры, значительно превышает их полосы пропускания. Огибающие на выходе фильтров выделяются линейными амплитудными детекторами. Выходы детекторов вычитаются. Образующиеся разнополярные импульсы усиливаются в видеоусилителе линейно, если их абсолютная величина меньше уровня насыщения . В противном случае, начиная с заданного уровня, модуль выходного напряжения видеоусилителя не увеличивается. Инвертор в свою очередь меняет полярность сигнал принятого с видеоусилителя, если эталонный сигнал соответствует «0». Таким образом, при совпадении с на выходе перемножителя будут положительные импульсы, в ином случае перемножитель будет выдавать отрицательные импульсы. Далее энергия импульсов накапливается в интеграторе.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: