Основной тракт радиолинии




Анализ основного тракта радиолинии целесообразно начать с выяснения принципиальной возможности получить приемлемые результаты в заданных условиях. Дело в том, что энергетический потенциал и скорость передачи информации, значения которые за­даны, уже определяют минимально возможную вероятность искажения символа. Если вероятность искажения символа окажется слишком боль­шой, то не имеет смысла рассчитывать реальную радиолинию, которая, разумеется, будет еще хуже.

Вероятность ошибки при оценке слова в сигнале КИМ-ЧМ для оптимальной обработки при приеме “в целом” равна

, (1)

где - отношение сигнла/шум, - энергия сигнала, - мощность полезного сигнала КИМ-ЧМ, - длительность слова, - спектральная плот­ность шума. После расчета ошибки по формуле (1) может оказаться не­обходимым потребовать изменить исходные условия — увеличить энергетический потенциал или уменьшить скорость передачи и толь­ко после этого приступить к расчету реальной радиолинии.

Система синхронизации

В цифровых радиолиниях необходимо применять кадровую при синхронной передаче, а также пословную синхронизации. В случае посимволь­ного приема дополнительно требуются сигналы посимвольной синхро­низации. С помощью соответствующих синхронизирующих сигналов осуществляется разделение каналов и обеспечивается правиль­ная работа декодирующих устройств командных сигналов. В нашем случае сигнал будет иметь следующий вид.

Рисунок 3 Структура демодулированного сигнала

Кадровая синхронизация. Синхронизирующее слово, ставящееся в начале каждого кадра, называется словом кадровой синхронизации. В качестве слов кадровой синхронизации час­то используются составные сигналы, причем выделение этих слов в при­емнике осуществляется с помощью пассивного согласованного фильт­ра (Рисунок 4). Напряжение на выходе согласованного фильтра воспроизводит автокорреляционную функцию синхронизирующего сигнала. Для уменьшения ошибок, возникающих при обнаружении синхронизирую­щего сигнала и определении его временного положения, автокорреля­ционная функция данного сигнала должна иметь узкий центральный пик и малый уровень «боковых» выбросов. Подобным свойством обла­дает ряд широкополосных сигналов, в том числе сигналы, сформиро­ванные на основе некоторых двоичных кодов.

Рисунок 4 Устройство декодирования кадрового синхронизирующего сигнала

Принятый синхронизирующий видеосигнал, поступает на вход линии задержки. Расстояние между отдельными отводами этой линии соответствует длительности элементарных импульсов кода . Максимальное время задержки синхронизирующего сигнала равно полной длительности сигнала . Сигналы, которые снимаются с отводов линии задержки, поступают на сумматор. При этом часть сигналов проходит через инверторы, изменяющие полярность сигналов. Пространственное расположение отводов линии задержки, к которым подключены инверторы, воспроизводит в обратном порядке временное положение символов «0», имеющихся в составе рассматриваемого синхронизирующего кодового слова. Тем самым обеспечивается синхронное накопление энергии отдельных импульсов этого слова в сумматоре. К выходу сумматора подключен фильтр, который согласован с одиночным видеоимпульсом длительности . В момент окончания принятого синхронизирующего кодового слова на выходе согласованного фильтра образуется короткий импульс значительной амплитуды. С помощью таких импульсов осуществляется запуск порогового устройства, предназначенного для выделения отдельных синхронизирующих сигналов.

На вход рассматриваемого согласованного фильтра поступает напряжение , которое содержит как синхронизирующее, так и телеметрические сигналы. Воздействие на согласованный фильтр телеметрических слов сопровождается образованием дополнительных «выбросов» напряжения на выходе этого фильтра. Для предотвращения ложных срабатываний порогового устройства под действием таких выбросов коэффициенты взаимной корреляции между синхронизирующим сигналом и отдельными телеметрическими словами должны иметь незначительную величину.

В инерционной системе кадровой синхронизации сигналы, выделенные с помощью согласованного фильтра, могут использоваться для автоматической подстройки частоты местного генератора синхронизирующих сигналов. Постоянная времени инерционной системы значительно превышает длительность синхронизирующего сигнала . Следовательно, в установившемся режиме обеспечивается хорошая фильтрация помех, и высокая точность определения начала кадра. Недостатком инерционной системы является значительное время обнаружения слова кадровой синхронизации, а также возможность срыва слежения под действием помех.

Пословная синхронизация предназначается для определения границ отдельных команд в составе кадра. Существуют различные способы осуществления пословной синхронизации. Способ, который мы будем использовать, основан на использовании специальных разделительных сигналов (Рисунок 3 – заштрихованные импульсы). При синхронной непрерывной передаче сообщений разделительные сигналы имеют периодический характер, поэтому в спектре модулирующего сигнала радиолинии возникает регулярная составляющая на частоте следования слов сообщения . После детектирования принятого радиосигнала эта составляющая выделяется с помощью узкополосного фильтра и используется для формирования сигналов пословной синхронизации. Такая система синхронизации является инерционной.

Посимвольная синхронизация используется при посимвольном приеме кодовых слов и обеспечивает разделение элементарных сигналов, соответствующих различным позициям кодового слова. Требования к точности посимвольной синхронизации зависят от используемого способа обработки элементарных информационных сигналов в приемнике. При обработке, близкой к оптимальной, а она в нашем случае именно такая, необходимо достаточно точное определение границ этих сигналов. Требования к точности синхронизации возрастают с уменьшением длительности элементарных сигналов.

Рисунок 5 Функциональная схема инерционной системы посимвольной синхронизации

Для выделения сигналов посимвольной синхронизации непосредственно используется последовательность принимаемых информационных символов. На Рисунок 5 показана функциональная схема инерционной системы посимвольной синхронизации. В результате дифференцирования сигнала , образуется последовательность импульсов, временное положение которых соответствует границам между соседними символами «1» и «0». Эта последовательность поступает на временной дискриминатор, который вырабатывает управляющее напряжение, пропорциональное временнóму рассогласованию между входной и опорной последовательностью импульсов. Последняя и используется в качестве сигналов посимвольной (тактовой) синхронизации. Опорная последовательность вырабатывается генератором синхронизирующих сигналов. С помощью управляющего напряжения изменяется частота следования импульсов опорной последовательности, тем самым обеспечивается автоматическая подстройка генератора синхронизирующих сигналов.

Анализ таких систем имеет целью определить флюктуации моментов временных меток относительно положения, соответствующих идеальной ра­боте. В нашем случае мы будем считать, что система синхронизации работает идеально. В качестве показателя точности можно взять среднеквадратическую ошибку, которая для нормальной работы должна быть много меньше длительности одного символа.

 

Расчет


Определение параметров имитационной модели

1) Источник дискретных сообщений:

- дискретные независимые сообщения с заданными вероятностями появления в источнике V(1) = 4;

- количество различных сообщений JU = 16;

- вероятность появления различных значений сообщения A(1...16) = 0.0625;

2) Кодирующее устройство:

- ортогональный код V(2) = 4;

- количество символов NS = 16;

3) Радиоканал:

- радиоканал, использующий сигнал КИМ-ЧМ и приемный тракт с частотным детектором на разнесенных согласованных фильтрах V(7) = 4, V(9) = 1.

- уровень насыщения в видеоусилителе задается, как A(171) = 1;

4) Аддитивные помехи:

- Широкополосная шумовая помеха. На входе радиоканала такая помеха представляет собой “белый” шум.

- параметром модели помехи является дисперсия . Таким образом, A(151) = 1.075;

- Узкополосная шумовая помеха:

- в данной модели мы не можем учесть помеху как узкополосную, так как не выполняется условие . Эта помеха учтена, широкополосная шумовая помеха;

5) Замирание амплитуды сигнала (фединг):

- случайные замирания амплитуды по закону Релея-Райса с экспоненциальной временной корреляцией V(6) = 2;

- среднее значение компоненты , задается как A(163) = 0.9;

- среднеквадратическое отклонение компоненты . Задается элементом массива A(161) = 0.3;

- коэффициент корреляции , задается как A(162) = 0.9;

6) Временное положение меток системы символьной синхронизации:

- флюктуация временного положения меток отсутствуют (символьная синхронизация идеальная) V(3) = 1;

- номинальное положение метки от конца символа , соответственно A(131) = 0;

7) Флюктуация фазы опорного напряжения синхронного детектора:

- идеальный синхронный детектор V(4) = 0;

8) Декодирующее устройство:

- прием кодового слова в целом V(8) = 5;

9) Продолжительность эксперимента:

- продолжительность машинного эксперимента определяется объемом исследуемой выборки сообщений (кодовых слов). Возьмем количество слов равное количеству команд переданных за сеанс связи M = 64.

10) Дополнительные параметры:

- IX = 7.


Анализ результатов расчета и моделирования

Расчеты, проведенные при выборе базового варианта радиолинии, дали следующие показатели достоверности приема информации:

· вероятность отказа от декодирования – ;

· вероятность ошибки кодового слова – ;

В результате моделирования получены следующие оценки достоверности:

· вероятность отказа от декодирования – ;

· вероятность ошибки кодового слова – ;

При моделировании была взята выборка командных слов, что соответствует длительности сеанса 3 секунды.

Как видно, результаты расчета и моделирования различны, однако надо заметить, что показатели в обоих случаях удовлетворяют ТЗ.

Оценим точность статического эксперимента при моделировании, учитывая количество независимых испытаний в данном эксперименте их 64.

· вероятность отказа от декодирования равна ;

· вероятность ошибки кодового слова равна ;

Итак, все получившиеся различия в результатах расчета и моделирования, являются неизбежными, те более, когда имитационная модель оставляет желать лучшего.

Литература

1. “Теория и проектирование радиосистем”, Л. В. Березин, В. А. Вейцель. – М.: Сов. радио, 1977.

2. “Основы радиоуправления”, под ред. В. А. Вейцеля и В. Н. Типугина. – М.: Сов. радио, 1973.

3. “Радиотехнические системы передачи информации”, П. И. Пеннин, Л. И. Филиппов. – М.: Радио и связь, 1984.

4. “Автоматизированная модель радиолинии с цифровой передачей информации”, уч. пособие, В. А. Вейцель, С. С. Нужнов. – М.: МАИ, 1985.

5. “Методические указания к курсовому проекту «Радиолинии с цифровой передачей информации»”, авт.-сост. В. А. Вейцель, А. И. Куприянов, М. И. Жодзишский. – М.: МАИ, 1987.

6. “Инженерный справочник по космической технике”, под. ред. Соловова. – М.: Воениздат, 1974.

7. https://www.airwar.ru/enc/bpla/pchela.html

8. https://www.airwar.ru/enc/bpla/rq4.html



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: