Устройство центрального процессора




Архитектура фон Неймана

 

Большинство современных процессоров для персональных компьютеров в общем основаны на той или иной версии циклического процесса последовательной обработки информации, изобретённого Джоном фон Нейманом. Д. фон Нейман придумал схему постройки компьютера в 1946 году.

Важнейшие этапы этого процесса приведены ниже. В различных архитектурах и для различных команд могут потребоваться дополнительные этапы. Например, для арифметических команд могут потребоваться дополнительные обращения к памяти, во время которых производится считывание операндов и запись результатов. Отличительной особенностью архитектуры фон Неймана является то, что инструкции и данные хранятся в одной и той же памяти.

Этапы цикла выполнения:

1. Процессор выставляет число, хранящееся в регистре счётчика команд, на шину адреса, и отдаёт памяти команду чтения;

2. Выставленное число является для памяти адресом; память, получив адрес и команду чтения, выставляет содержимое, хранящееся по этому адресу, на шину данных, и сообщает о готовности;

3. Процессор получает число с шины данных, интерпретирует его как команду (машинную инструкцию) из своей системы команд и исполняет её;

4. Если последняя команда не является командой перехода, процессор увеличивает на единицу (в предположении, что длина каждой команды равна единице) число, хранящееся в счётчике команд; в результате там образуется адрес следующей команды;

5. Снова выполняется п. 1.

Данный цикл выполняется неизменно, и именно он называется процессом (откуда и произошло название устройства).

Во время процесса процессор считывает последовательность команд, содержащихся в памяти, и исполняет их. Такая последовательность команд называется программой и представляет алгоритм полезной работы процессора. Очерёдность считывания команд изменяется в случае, если процессор считывает команду перехода — тогда адрес следующей команды может оказаться другим. Другим примером изменения процесса может служить случай получения команды остановки или переключение в режим обработки аппаратного прерывания.

Команды центрального процессора являются самым нижним уровнем управления компьютером, поэтому выполнение каждой команды неизбежно и безусловно. Не производится никакой проверки на допустимость выполняемых действий, в частности, не проверяется возможная потеря ценных данных. Чтобы компьютер выполнял только допустимые действия, команды должны быть соответствующим образом организованы в виде необходимой программы.

Скорость перехода от одного этапа цикла к другому определяется генератором тактовых импульсов. Генератор тактовых импульсов – генерирует последовательность электрических импульсов, частота которых определяет тактовую частоту процессора, промежуток времени между соседними импульсами, определяет время одного такта или просто такт работы машины. Частота генератора тактовых импульсов является одной из основных характеристик компьютера и во многом определяет скорость его работы, поскольку каждая операция выполняется за определенное количество тактов.

 

Устройство центрального процессора

 

Центральный процессор (ЦП; CPU — англ. céntral prócessing únit, дословно — центральное вычислительное устройство) — исполнитель машинных инструкций, часть аппаратного обеспечения компьютера или программируемого логического контроллера, отвечающая за выполнение арифметических операций, заданных программами операционной системы, и координирующий работу всех устройств компьютера.

На рис.1 показано устройство обычного компьютера. Центральный процессор — это мозг компьютера. Его задача — выполнять программы, находящиеся в основной памяти. Он вызывает команды из памяти, определяет их тип, а затем выполняет их одну за другой. Компоненты соединены шиной, представляющей собой набор параллельно связанных проводов, по которым передаются адреса, данные и сигналы управления. Шины могут быть внешними (связывающими процессор с памятью и устройствами ввода-вывода) и внутренними.

Процессор состоит из нескольких частей. Блок управления отвечает за вызов команд из памяти и определение их типа. Арифметико-логическое устройство выполняет арифметические операции (например, сложение) и логические операции (например, логическое И).

Внутри центрального процессора находится память для хранения промежуточных результатов и некоторых команд управления. Эта память состоит из нескольких регистров, каждый из которых выполняет определенную функцию. Обычно все регистры одинакового размера. Каждый регистр содержит одно число, которое ограничивается размером регистра. Регистры считываются и записываются очень быстро, поскольку они находятся внутри центрального процессора.

Самый важный регистр — счетчик команд, который указывает, какую команду нужно выполнять дальше. Название "счетчик команд" не соответствует действительности, поскольку он ничего не считает, но этот термин употребляется повсеместно. Еще есть регистр команд, в котором находится команда, выполняемая в данный момент. У большинства компьютеров имеются и другие регистры, одни из них многофункциональны, другие выполняют только какие-либо специфические функции.


Рис.1 Схема устройства компьютера с одним центральным процессором и двумя устройствами ввода-вывода

 

Системная шина

 

Основная интерфейсная система компьютера, обеспечивающая сопряжение и связь всех устройств между собой, включая себя:

1. Кодовая шина данных (КШД) – содержит провода и схемы сопряжения для параллельной передачи всех разрядов машинного кода операнда.

2. Кодовая шина адреса (КША) – содержит провода и схемы сопряжения для параллельной передачи всех разрядов кода адреса ячейки основной памяти или порта ввода вывода внешнего устройства.

3. Кодовая шина инструкций (КШИ) – содержит провода и схемы сопряжения для передачи инструкций во все блоки машины.

Системная шина – обеспечивает три направления передачи информации:

1. Между процессором и основной памятью.

2. Между процессором и портами ввода вывода внешних устройств в режиме прямого доступа к памяти.

3. Между основной памятью и портами ввода вывода внешних устройств.


4. CISC, RISC, MISC процессоры

 

CISC-процессоры

Complex Instruction Set Computer (CISC)— вычисления со сложным набором команд. Процессорная архитектура, основанная на усложнённом наборе команд. Типичными представителями CISC является семейство микропроцессоров Intel x86 (хотя уже много лет эти процессоры являются CISC только по внешней системе команд).

RISC-процессоры

Reduced Instruction Set Computing (RISC) — вычисления с сокращённым набором команд. Архитектура процессоров, построенная на основе сокращённого набора команд. Характеризуется наличием команд фиксированной длины, большого количества регистров, операций типа регистр-регистр, а также отсутствием косвенной адресации. Концепция RISC разработана Джоном Коком из IBM, название придумано Дэвидом Паттерсоном.

Самая распространённая реализация этой архитектуры представлена процессорами серии PowerPC, включая G3, G4 и G5. Довольно известная реализация данной архитектуры — процессоры серий MIPS и Alpha.

MISC-процессоры

Minimum Instruction Set Computing(MISC) — вычисления с минимальным набором команд. Дальнейшее развитие идей команды Чака Мура, который полагает, что принцип простоты, изначальный для RISC процессоров, слишком быстро отошёл на задний план. В пылу борьбы за максимальное быстродействие, RISC догнал и перегнал многие CISC процессоры по сложности. Архитектура MISC строится на стековой вычислительной модели с ограниченным числом команд (примерно 20-30 команд).

 


Конвейеры

 

Уже много лет известно, что главным препятствием высокой скорости выполнения команд является их вызов из памяти. Для разрешения этой проблемы разработчики придумали средство для вызова команд из памяти заранее, чтобы они имелись в наличии в тот момент, когда будут необходимы. Эти команды помещались в набор регистров, который назывался буфером выборки с упреждением. Таким образом, когда была нужна определенная команда, она вызывалась прямо из буфера, и не нужно было ждать, пока она считается из памяти. Эта идея использовалась еще при разработке IBM Stretch, который был сконструирован в 1959 году.

В действительности процесс выборки с упреждением подразделяет выполнение команды на два этапа: вызов и собственно выполнение. Идея конвейера еще больше продвинула эту стратегию вперед. Теперь команда подразделялась уже не на два, а на несколько этапов, каждый из которых выполнялся определенной частью аппаратного обеспечения, причем все эти части могли работать параллельно.

На рис. 2а изображен конвейер из 5 блоков, которые называются стадиями. Стадия С1 вызывает команду из памяти и помещает ее в буфер, где она хранится до тех пор, пока не будет нужна. Стадия С2 декодирует эту команду, определяя ее тип и тип операндов, над которыми она будет производить определенные действия. Стадия СЗ определяет местонахождение операндов и вызывает их или из регистров, или из памяти. Стадия С4 выполняет команду, обычно путем провода операндов через тракт данных. И наконец, стадия С5 записывает результат обратно в нужный регистр.

 


Рис.2 Конвейер из пяти стадий(а); состояния каждой стадии в зависимости от количества пройденных циклов(б) показано девять циклов

 

На рис. 2б мы видим, как действует конвейер во времени. Во время цикла 1 стадия С1 работает над командой 1, вызывая ее из памяти. Во время цикла 2 стадия С2 декодирует команду 1, в то время как стадия С1 вызывает из памяти команду 2. Во время цикла 3 стадия СЗ вызывает операнды для команды 1, стадия С2 декодирует команду 2, а стадия С1 вызывает третью команду. Во время цикла 4 стадия С4 выполняет команду 1, СЗ вызывает операнды для команды 2, С2 декодирует команду 3, а С1 вызывает команду 4. Наконец, во время пятого цикла С5 записывает результат выполнения команды 1 обратно в регистр, тогда как другие стадии работают над следующими командами.

Чтобы лучше понять принципы работы конвейера, рассмотрим аналогичный пример. Представим себе кондитерскую фабрику, на которой выпечка тортов и их упаковка для отправки производятся раздельно. Предположим, что в отделе отправки находится длинный конвейер, вдоль которого стоят 5 рабочих (или блоков обработки). Каждые 10 секунд (это время цикла) первый рабочий ставит пустую коробку для торта на ленту конвейера. Эта коробка отправляется ко второму рабочему, который кладет в нее торт. После этого коробка с тортом доставляется третьему рабочему, который закрывает и запечатывает ее. Затем она поступает к четвертому рабочему, который ставит на ней ярлык. Наконец, пятый рабочий снимает коробку с конвейерной ленты и помещает ее в большой контейнер для отправки в супермаркет. Примерно таким же образом действует компьютерный конвейер: каждая команда (в случае с кондитерской фабрикой — торт) перед окончательным выполнением проходит несколько шагов обработки.

Возвратимся к нашему конвейеру, изображенному на рис.2. Предположим, что время цикла у этой машины 2 нс. Тогда для того, чтобы одна команда прошла через весь конвейер, требуется 10 нс. На первый взгляд может показаться, что такой компьютер может выполнять 100 млн команд в секунду, в действительности же скорость его работы гораздо выше. Во время каждого цикла (2 нс) завершается выполнение одной новой команды, поэтому машина выполняет не 100 млн, а 500 млн команд в секунду.

Конвейеры позволяют найти компромисс между временем ожидания (сколько времени занимает выполнение одной команды) и пропускной способностью процессора (сколько миллионов команд в секунду выполняет процессор). Если время цикла составляет Т нс, а конвейер содержит п стадий, то время ожидания составит п*Т нс, а пропускная способность — 1000/Т млн команд в секунду.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: