Математическое ожидание остатков равно нулю




дисперсия остатков минимальная

точность оценок выборки увеличивается с увеличением объема выборки

дисперсия остатков не зависит от величины

Решение:

Несмещенность оценок параметров регрессии означает, что математическое ожидание остатков равно нулю.

4. Если оценка параметра является смещенной, то нарушается предпосылка метода наименьших квадратов о _________ остатков.

нулевой средней величине

нормальном законе распределения

случайном характере

гомоскедастичности

Решение:

Оценка называется несмещенной, если математическое ожидание остатков равно нулю. Если оценка параметров регрессии является смещенной, то математическое ожидание остатков отличается от нуля, и при большом количестве выборочных оцениваний остатки будут накапливаться.
Нарушается предпосылка о нулевой средней величине остатков.

5. Состоятельность оценок параметров регрессии означает, что …

Точность оценок выборки увеличивается с увеличением объема выборки

математическое ожидание остатков равно нулю

дисперсия остатков минимальная

дисперсия остатков не зависит от величины

Решение:

Состоятельность оценок параметров регрессии означает, что точность оценок выборки увеличивается с увеличением объема выборки.


Тема 8: Обобщенный метод наименьших квадратов (ОМНК)

1. В случае нарушений предпосылок метода наименьших квадратов применяют обобщенный метод наименьших квадратов, который используется для оценки параметров линейных регрессионных моделей с __________ остатками.

Автокоррелированными и/или гетероскедастичными

гомоскедастичными и некоррелированными

только автокоррелированными

только гетероскедастичными

Решение:

Метод наименьших квадратов (МНК) позволяет рассчитать такие оценки параметров линейной модели регрессии, для которых сумма квадратов отклонений фактических значений зависимой переменной y от ее модельных (теоретических) значений минимальна. Отклонение , посчитанное для i -го наблюдения, является ошибкой модели. Предпосылками МНК являются: случайный характер остатков, нулевая средняя величина, отсутствие автокорреляции в остатках, постоянная дисперсия (гомоскедастичность) остатков, подчинение нормальному закону распределения. Если остатки не удовлетворяют предпосылкам МНК о автокоррелированности и гетероскедастичности остатков, то применение обычного (традиционного) МНК нецелесообразно. Если остатки автокоррелированны и/или гетероскедастичны, то проводят преобразование переменных и расчет оценок параметров осуществляют с использованием обобщенного метода наименьших квадратов (ОМНК). Правильный вариант ответа – «автокоррелированными и/или гетероскедастичными».

2. При нарушении гомоскедастичности остатков и наличии автокорреляции остатков рекомендуется применять _____________ метод наименьших квадратов.

Обобщенный

косвенный

двухшаговый

трехшаговый

Решение:

При нарушении гомоскедастичности остатков и наличии автокорреляции остатков рекомендуется вместо традиционного метода наименьших квадратов применять обобщенный метод наименьших квадратов.

3. Пусть y – издержки производства, – объем продукции, – основные производственные фонды, – численность работников. Известно, что в уравнении дисперсии остатков пропорциональны квадрату численности работников .
После применения обобщенного метода наименьших квадратов новая модель приняла вид . Тогда параметр в новом уравнении характеризует среднее изменение затрат …



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-12-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: