Элементы научного знания в цивилизациях Древнего Востока.




Древневосточные цивилизации (Египет, Шумер, Вавилон, Индия, Китай) обладали хорошо отлаженным механизмом для хранения и передачи информации. Восток выработал конкретные знания в области математики, астрономии на базе определенного практического опыта, но они передавались по принципу наследственного профессионализма, от старшего к младшему внутри касты жрецов. Только в руках жрецов были сосредоточены знания, в том числе и научные. Это знание считалось идущим от бога – покровителя этой касты. В силу этого знание было тайным, доступным только посвященным. По отношению к нему отсутствовала критическая позиция, так как не дело человека – исправлять богов. Такое знание было невозможно подвергнуть каким-либо существенным изменениям, оно функционировало как набор готовых рецептов. Процесс обучения этому знанию сводился к заучиванию этих рецептов наизусть, без доказательств. Вопрос, как были получены эти знания и можно ли заменить их более совершенными, даже не вставал. Новые знания если и появлялись в такой системе передачи информации, то только случайно и очень редко. В этом кроется одна из причин гиперстатичности древнеегипетской цивилизации, просуществовавшей почти четыре тысячи лет без существенных изменений. Чуть более динамичной была древневавилонская цивилизация. Так, вавилонские жрецы настойчиво исследовали звездное небо и добились в этом больших успехов, но это был не научный, а вполне практический интерес. Там была создана астрология как прикладное знание, без которого не начиналось ни одно более или менее важное дело. То же самое можно сказать и о развитии знаний в Индии и Китае. Эти цивилизации дали миру множество конкретных знаний, но это были знания, необходимые для практической жизни, для религиозных ритуалов, всегда бывших в этих странах важнейшей частью повседневной жизни.

Анализ древневосточных цивилизаций позволяет говорить об отсутствии фундаментальности и теоретичности знаний, которые были нужны для чисто практических целей, среди которых важнейшими считались правильно исполненные религиозные ритуалы. Научные знания прежде всего использовались для их совершения.

Даже в математике ни вавилоняне, ни египтяне не проводили различия между точными и приближенными решениями математических задач, при том, что эти задачи могли быть достаточно сложными. Любое решение, приводившее к практически приемлемому результату, считалось хорошим. Научные знания Древнего Востока были просто набором алгоритмов и правил для решения отдельных практических задач. И не имеет значения, что некоторые из этих задач были достаточно сложными, например, вавилоняне решали квадратные и кубические алгебраические уравнения. Решение частных задач не выводило на общие законы, отсутствовала система доказательств, что делало способы их решения профессиональной тайной, сводившей в конечном счете знание к магии и фокусам. Не случайно так тяжело было учиться в школах писцов в Египте и Вавилоне. Ученикам этих школ приходилось заучивать наизусть все конкретные решения для каждой отдельной проблемы, не видя никакой связи между полученными знаниями и не подозревая о том, что многие разные, на первый взгляд, задачи имеют одно и то же решение. Сказанное позволяет сделать вывод об отсутствии подлинной науки на Древнем Востоке. Это существенно отличает восточную цивилизацию от античного мира и сложившейся на его основе современной европейской цивилизации.

Таким образом, можно сделать вывод об отсутствии подлинной науки на Древнем Востоке, где существовали лишь разрозненные научные представления. Это существенно отличает древневосточные цивилизации от древнегреческой и сложившейся на ее основе современной европейской цивилизации и делает науку феноменом только этой цивилизации.

Наука в Древнем Китае

Характерную особенность древнекитайской цивилизации составлял культ образованности и грамотности. Основные направления философско-теоретического мышления древнего Китая придавали исключительную важность гуманитарному фактору, признавали человека венцом природы и ставили его вровень с небом и землей; в этой космической триаде человек, как связующее звено, обусловливал единство мира. Наиболее важное место в этом направлении занимает конфуцианство — этико-политическое учение философа-идеалиста Конфуция. Его идеалом есть высокоморальный человек (учение об изначальной доброте человеческой природы), опирающийся на традиции мудрых предков.

Прогресс науки Древнего Китая определялся ее прикладным характером, в отличие от Древней Греции, где наука противопоставлялось технике. Больших успехов достигла математика, так в II в. до н. э. был составлен трактат «Математика в девяти книгах». Это своего рода руководство для землемеров, астрономов, чиновников и т. д. В книге помимо чисто научного знаний, были представлены цены на различные товары, показатели урожайности земледельческих культур и т. д. С развитием математики были тесным образом связаны значительные достижения древних китайцев в области астрономии и календаря. Солнечно-лунный календарь древних китайцев был приспособлен к нуждам сельскохозяйственного производства.
В ремесле и земледелии усовершенствовался плуг, созданы механические двигатели, использующий силу падающей воды, создан водоподъемного насоса. В ранних сочинениях содержатся описания грядковых культур полеводства, системы переменных полей и чередования посевов, описаны различные способы удобрения почвы и предпосевной пропитки семян, имелись специальные руководства по орошению и мелиорации. Вершиной древнекитайского научного знания в области биологии было разведение шелковичных червей и создании техники шелководства. На основе которого, была изобретена бумага (из отходов коконов шелка), что впоследствии привело к ее созданию из древесного волокна. Весьма значительное развитие получила в Древнем Китае медицина. Древнекитайские врачи еще в IV—III вв. до н. э. стали применять иглоукалывание, метод прижиганий, разработали руководства по диетологии и лечебной гимнастике, пособие по лечению методом прижиганий, сборник различных рецептов, который содержал 280 предписаний, предназначенных для лечения 52 болезней. Среди рекомендуемых средств наряду с лекарствами, упоминаются и некоторые магические приемы. Однако в более поздних сочинениях магические приемы лечения полностью отсутствовали. К III в. относится применение знаменитым врачом Хуа То местной анестезии при полостных операциях. Научное знание, достижения и открытия Древнего Востока задолго опередили научную мысль Запада. Ключом такого успеха многие учение считают особого взгляда на природу, научная мысль Востока искала гармоничный синтез деятельности человека и природы, что выражалось в особом, высоконравственном восприятии окружающего мира.

В Китае жили поколения выдающихся ученых. Науки, которыми они занимались, содержали систематичные теории и практику, однако, в отличие от методов современной науки, их нельзя было передавать кому угодно, потому что существовали определенные требования к уровню нравственности. Ортодоксальная китайская культура также, как и наука, содержит обязательное требование – почтение к Богам. Ученым необходимо было повышать свой нравственный уровень. Научные направления были просты и благородны, а общественные устои были хорошими. Когда атеизм проник в культуру общества, врачи предпочли вообще не передавать знания, чем передавать их человеку с низким уровнем морали. Даже собственные дети не были исключением. Поэтому имеем то, что имеем: многие хорошие вещи сейчас уже похоронены, а суть древней китайской науки в обществе потеряна.

Наука в Древней Индии

Наука Древней Индии отличалось наличием особого типа мышления у ученых основанного на нравственных принципах и их сверхъестественных способностей, что позволяло им видеть вещи, находящиеся в других пространствах, объяснять человеческие заболевания, раскрывать тайны вселенной и жизни. В отличие от древнегреческих философов, знания не требовали логических доказательств, их было достаточно увидеть обладая сверхъестественными способностями.

К основным достижениям науки Древней Индии можно отнести следующее. Древние индийцы знали, что Земля вращается вокруг Солнца и своей оси, о существовании атома и умели его измерять, ввели число «нуль». Большинство естесвеннонаучных знаний в Древней Индии передавалось в мифологической форме. Примером тому может послужить перечень последовательных обличий одного из индийских богов Вишну, которые он, согласно мифу, принимал для зашиты Земли от демонов. Сначала это была рыба, спасшая первого человека от потопа, затем, черепаха для поиска напитка бессмертия; кабан, поднявший Землю из преисподни; человеко-лев, сокрушивший очередного демона; Парашурама - человек яростного и необузданного нрава; Рама - человек благородный; Кришна -- богочеловек. На этом примере можно проследить эволюцию хордовых в биологии, а четыре последних воплощения - с социальной эволюцией.

Индийская математика в соответствии с общей установкой древнеиндийской культуры возникает из нужд культа. "Алтари ориентировались по сторонам света: основания их строились по точно установленным фигурам, например равнобедренным трапециям с заданными соотношениями сторон. Между основаниями алтарей соблюдались соотношения двух видов: либо основания были подобны, а площади относились, как первые числа натурального ряда, либо основаниями алтарей служили равновеликие по площади, по различные по форме многоугольники". При этом возникала потребность в решении различных геометрических задач: "построения прямого угла, квадрата, целочисленных прямоугольных треугольников, получения из последних, удвоения, утроения данного квадрата, преобразование квадрата площади (a) в квадрат площади (n*a), преобразования прямоугольника в равновеликий квадрат и некоторых других. Была известна и теорема Пифагора". Однако стиль мышления древнеиндийской математики был не геометрическим, а, скорее, алгебраическим. Поэтому в отличие от греческой индийская математика спокойно относилась к иррациональности и вычисляла корень из 2 с точностью до шестого знака. Если современная геометрия имеет свой исток в Древней Греции, то арифметика берет начало в Индии. Столь привычная для нас десятичная позиционная система счисления индийского происхождения. Индийские математики также сделали первые шаги в создании символической алгебры, а также разработали некоторые чисто алгебраические методы решения задач.

Особое место занимала в структуре древнеиндийской науки лингвистика. Связано это было с глубоким пиететом перед устной речью, присущим древнеиндийской культуре. Как вы помните, в философской школе мимансиков утверждалось, что естественное существование мира поддерживается благодаря жертвоприношениям, что жертвоприношение является как бы фундаментом мира, мировой осью. В жертовоприношении же важнейшая роль отводилась произнесению магических формул, священных текстов. Роль произносимого голосом текста отчетливо видна при обучении, в котором заучивание составляло очень существенный элемент. Недоверие к записанному слову является важной характеристикой древнеиндийской ментальности. "Письменность, появившаяся в Индии около I тысячелетия до н.э., долгое время использовалась лишь для хозяйственных и юридических целей. Вся духовная культура - религиозная поэзия, философия, литература и наука - передавались устно. Даже в более позднее время, когда письменность получила широкое распространение, мнемоника продолжала быть главным средством хранения информации. Чтение по написанному тексту, например, считалось позорным как один из "шести недостойных способов чтения".

Медицинская наука

Особо успеха достигла древнеиндийская медицина (аюрведа), которая была заложена в 3 веке до н.э. Аюрведа - это больше, чем медицина, это - наука о жизни. В ней есть основы естествознания, физики, химии, биологии и космологии. Основным отличием аюрведы от медицины (в современном понимании) состоит в использовании целостного подхода при рассмотрении заболеваний человека, так болезнь рассматривалась не только как заболевание физического тела, но и исследовалось духовное и психическое состояние пациента. Человек был представлен как целостная психофизическая единица Космоса.


5. Наука в Древней Греции
6. Наука в Древнем Риме.
7. Византийская наука


8. Арабо-мусульманская наука

Со второй половины 8 в. научное лидерство перемещается на Ближний Восток, в арабский халифат. В 8 в. на Аравийском полуострове возникает новая религия - ислам. Вскоре после этого начались арабские завоевания.

Подчинив себе многие страны Ближнего Востока и Средней Азии, арабы овладели Египтом и Северной Африкой и, наконец, завоевали Испанию. Возникла огромная

Арабская империя (халифат) с центром в Дамаске, а затем в Багдаде. В начале завоевательных войн арабы не интересовались культурными и научными ценностями в покоренных странах. Но вскоре халифы, подражая древним властителям, завели себе роскошные дворы и стали покровительствовать наукам. При дворе багдадского халифа аль-Мамуна создавались библиотеки и школы, на арабский язык были переведены сочинения Аристотеля, Галена, Евклида, Птолемея и Гиппократа, произведения персидской и индийской литературы. Мусульманской теологии удалось овладеть философией и наукой только в 13—14 вв., после чего на науку укоренилось воззрение как на суету сует. То же самое еще раньше было сделано в Индии распространением буддизма.

С деятельностью арабов связана алхимия - изыскания по превращению простых металлов в драгоценные с помощью особого вещества - философского камня. (Алхимия возникла в Египте в 4 в.). К другим алхимическим проблемам относятся возвращение молодости и задача искусственного изготовления человека (гомункулюса). Обретение власти над веществом алхимия не связывала с познанием объективных законов природы. Однако, в процессе практических алхимических по исков был от крыт ряд веществ, использованных впоследствии химией. Особое внимание уде ля лось получению и очистке металлов. Химические и алхимические сведения обобщены Джабир ибн-Гайяном (Гебером) (721—825). Он, в частности, описал нашатырный спирт, приготовление свинцовых белил, получение уксусной кислоты перегонкой уксуса. Пытался разработать теоретические основы трансмутации металлов. По его представлениям семь основных металлов (золото, серебро, медь, железо, свинец, олово, ртуть) образуются из смеси ртути и серы. Один металл превращается в другой под действием эликсира (философского камня). Труднее всего образуется золото. Разделил вещества на органические и неорганические.

В 8—15 вв. в арабских странах появились так назывемые зид- жи - справочники для астрономов и географов с описанием кален- да рей, указанием исторических дат, три гонометрическими и астрономическими таблицами.

Мухамед бен Муса аль-Хорезми (787—ок.850) ввел в арабский мир индийскую позиционную систему и цифровую символику с нулем, воспринятую впоследствии европейской математикой.

Употребил термин «ал-джебр» - «алгебра» для обозначения всей науки о решении уравнений.

ибн-Закария ар-Рази (864—925) - жил в Иране, был атомистом, алхимиком. Описывал химическую посуду, которой пользовались сначала арабские, а затем западноевропейские алхимики: колбы, стаканы, воронки, ступки, бани, фильтры, печи.

Абу Наср аль-Фараби (870—950) создал арабскую энциклопедию наук того времени, являлся последователем Аристотеля.

Абу-р-Рейхан аль-Бируни (973—ок. 1050), хорезмийский ученый-энциклопедист. Вычислил угол наклона эклиптики к экватору. Определил радиус Земли.

В 961 г. в Кордове учреждена высшая арабская школа с преподаванием философии, математики, астрономии с астрологией, медицины, алхимии. Подобные школы стали вскоре работать в Гранаде, Саламанке, Севилье, Толедо, Палермо.

Крупнейший среднеазиатский философ-естествоиспытатель и врач Абу-Али ибн-Сина (Авиценна, 980—1037) переработал предписания Галена и объединил их с медицинскими сведениями своего времени в «Каноне медицины» - сочинении энциклопедического характера. Другое его сочинение - «Канонисцеляющих средств». Авиценна выступал против попыток алхимиков превращать металлы в золото.

Омар Хайям (ок. 1040—1123) - математик, астроном, поэт, жил на территории Ирана, утверждал, что Вселенная бесконечна и существует вечно. Потерпев неудачу в прямом поиске корней произвольного кубического уравнения, Омар Хайям открыл несколько способов приближенного вычисления этих корней.

Абу аль-Валид Мухаммед Ибн Рушд, известный в Европе под именем Аверроэса (1126—1198), работал в Марокко, Севилье и Кордове. Выдвигал мысль, что бытие бога «совечно» материальному миру. Источник движения материи лежит в самой материи.

Улугбек (1394—1449), внук Тимура, правил в Самарканде в 1409—1449, построил грандиозную обсерваторию; был убит своими политическими противниками.

Достижения арабских ученых следует рассматривать как важное звено между античной и западноевропейской наукой.

Европейцы традиционно считают, что христианская Европа является прямой наследницей греческой культуры. В действительности античная культура в первую очередь была освоена интеллектуальной и художественной интеллигенцией Халифата. Христианская Европа в начале средневековья в определенной степени отказалась от античного интеллектуального и научного наследия. Но в дальнейшем, благодаря арабо-мусульманским ученым стало возможным восстановление практически утраченной связи между античной и европейской христианской культурами. Греческая наука и философия дошла до европейцев через мусульманских посредников. Наследие Греции было воспринято Европой после того, как его изучила и усвоила арабо-мусульманская культура, являющаяся той силой, которая сохранила для Европы греческие знания. Арабо-мусульманская наука, впитав в себя (в значительной степени благодаря сирийцам) греческие достижения, развивала их, и сама достигла значительных результатов. Мусульмане непросто сохранили интеллектуальное наследие греков, они сформировали на его опыте собственные научные школы, без которых в дальнейшем была бы невозможной современная Западная цивилизация.

Считается, что первым в исламском мире, кто обратился к философским трудам Аристотеля был Аль-Кинди – переводчики комментатор его философских трудов. Он изучил не только греческую философию, но также и естественные науки и математику.

Аль-Фараби – апологет системы Аристотеля, интерпретировавший ее в духе неоплатонизма. Он также изучал естественные науки, логику и политическую теорию. Вдохновленный Платоном, аль-Фараб и разработал теорию «Идеального Города», описав образцового государя – «Платона, облаченного в плащ пророка Магомета».

Закат арабо-мусульманской науки (прежде всего вследствие противодействия представителей религиозной власти) совпал с восходом итальянского Ренессанса. Роль арабо-мусульманской культуры в сохранении и возрождении античной научной традиции в Европе переоценить трудно. Научный опыт мусульман оказал значительное влияние на западную Европу конца Средних веков, явившись важным фактором в становлении эпохи Возрождения. Арабо-мусульманская культура подготовила для Европы ту почву, на которой стало возможным появление феномена Возрождения. Андалусия, Сицилия, Северная Африка и Ближний Восток стали для средневековой Европы своеобразными «маяками интеллектуального света». Особая роль в контактах христианского Запада и арабо-мусульманского мира принадлежит Испании, где блестяще развивались литература, философия, естественные науки. В ее научные и культурные центры – Кордову, Севилью, Толедо, Громаду, прибывали для обучения астрономии, медицины, географии и других естественнонаучных дисциплин ученые не только из мусульманских стран Востока, но и ученые из Италии, Франции и Англии. Эти города являлись центрами крупнейших сообществ ученых, переводчиков, писцов, книгоиздателей, которые занимались изучением греческого наследия и его переосмыслением в рамках исламских традиций.
9. Европейская наука в эпоху средневековья.


10. Наука в эпоху Возрождения.

Эпоха европейского Возрождения охватывает период XIV-XVI вв. «Возрождение» (от франц. «renaissance» — возрождение, Ренессанс) ─ возврат к ценностям античного мира. В этот период происходит возрождение огромного интереса к античной философии, к античным религиозным и оккультным учениям, к античной литературе и изобразительному искусству. Деятели эпохи Возрождения или (как они себя называли) гуманисты верили, что они формируют новую эпоху, с новым укладом жизни и возрожденными ценностями античного мира. Гуманистами выдвигался идеал нового человека, творца своей судьбы и своего бытия. Пико дела Мирандола (1463-1494) утверждал, что человек ─ единственное в мире существо, наделенное способностью формировать самого себя, опираясь на знания ─ этику и науки о природе.

В эпоху Возрождения блестящее развитие получает литература и изобразительное искусство (живопись, скульптура). Искусство оказалось вплетено во все сферы человеческой жизни. Огромное влияние оказало искусство и на развитие науки. Наука в эпоху Возрождения становится активной, творческой. Творчество гуманисты воспринимали как одно из главных предназначений человека. Так, Леон Батиста Альберти (1404-1472) ─ писатель, архитектор, теоретик искусства ─ утверждал, что в своей жизненной практике человек должен раскрыть заложенные в нем способности. В этом главная цель его существования. Причем, творчество понималось очень широко ─ от труда скромного ремесленника до высот научной и художественной деятельности. Изобретатель, мастер, художник, архитектор, ученый ─ профессии, в эпоху Возрождения часто неразделимые!

В наивысшей степени все эти грани человеческой деятельности соединились в творчестве Леонардо да Винчи. Мир его интересов не поддается одномерному определению. Его влекли не только архитектура, скульптура и живопись. Он не с меньшим увлечением изобретал невиданные машины, замысловатые конструкции, придумывал невероятное оружие и музыкальные инструменты, проектировал мосты, фортификационные сооружения, каналы. Он соединил науку, технику и искусство в практических целях. Одним из первых Леонардо применил в науке эксперимент, утверждая, что опыт никогда не обманывает.

В Эпоху Возрождения в Западной Европе произошли изменения во всех сферах жизни человека — в области философской мысли, в литературе, в области художественного творчества, в научном и религиозном аспектах, в социально-политических представлениях, что подготовило научную революцию XVII века. Крупнейшим научным открытием периода стала гелиоцентрическая модель мира, созданная Н. Коперником, к которой ученый пришел скорее под сильным влиянием чувства гармонии, чем в ходе научных изысканий. Для Н. Коперника, убежденного в простоте, разумности природы, система Птоломея выглядела совсем негармоничной, очень сложной, какой-то нагроможденной. Результатом его сомнений стало создание новой концепции мироустройства. Гелиоцентрическая картина мира с доказательствами была изложена им в труде «О вращениях небесных сфер», который был опубликован незадолго до его смерти и в 1616 г был внесен католической церковью в «Список запрещенных книг». Запрет был снят только спустя более 200 лет.

Научная мысль в эпоху Возрождения была представлена исследованиями по оптике, электричеству, магнетизму, механике.

Таким образом, в XIV—XVI столетиях в науке и технике большинства стран Европы произошли важные изменения, подготовившие переход от Средневековья к Новому времени. Прежде всего, стал возрождаться интерес европейцев к полузабытому наследию разрушенной античной культуры. В этот период истории жили знаменитые учёные и инженеры - Леонардо да Винчи, Николай Коперник и Галилео Галилей. Быстро развивались такие науки, как математика, астрономия, механика. Продолжалось становление экспериментального метода на основе соединения науки и практики. Открытия и изобретения, сделанные в этот период, оказали огромное влияние на всю последующую историю человечества.

Эпоха Возрождения ─ особый период в европейской истории. С одной стороны, это расцвет искусства, возрождение античности, гуманизм. Но, с другой стороны, рушились прежние ценности, установки. Формировалась новая концепция человека ─ решительной и предприимчивой личности. В ходе Реформации XVI в. религиозные догмы сменились установками на успех, достаток, социальное и материальное благополучие. Вера в профессию, в которой можно многого достичь сменила веру в Бога. То есть, рушились прежние установки, ценности, таяла вера во всемогущество церкви, вера в Бога не давала ответов на многие вопросы. И все эти духовные процессы происходили на фоне перемен социальных, общественных, политических. Но жить без веры ─ нельзя. И возникла вера в науку! Безусловно, развитие науки и техники в XV-XVI вв. подготовили научную революцию XVII столетия!

11. Возникновение науки Нового времени.
12. Наука эпохи Просвещения.

XVIII век ─ век Разума, век Просвещения, философствующий век.

В этот период европейской (западной) истории окончательно сложились ценности нового буржуазного, капиталистического, рыночного общества. Сложились ценности, идеология индустриального общества. По сути, произошла интеллектуальная, идеологическая революция, окончательно утвердившая представления о том, что не только законы природы могут быть осмыслены человеком, но и законы общественного развития.

Характерные черты рассматриваемого периода: господство рационалистического мировоззрения, начало промышленной революции и связанный с ней рост технических изобретений, формирование основ индустриальной цивилизации.

В области естествознания в XVIII в. под влиянием работ И. Ньютона формируется классическая механика, теория движения газов (аэродинамика), теория движения жидкостей. Атомистическая (корпускулярная) теория формирует механистическую картину мира, где природа воспринимается как некий механизм, состоящий из огромного количества обособленных материальных тел, вступающих в элементарные связи и подчиненных однозначным и простым закономерностям; при этом законы механики рассматриваются как всеобщие.

Одним из направлений исследований стали атмосферные электрические явления. Так, американский политик, государственный деятель и ученый Бенджамин Франклин отметил сходство между электрической искрой и молнией. В этой связи в своих письмах Лондонскому Королевскому обществу он сообщил о возможности предохранить здания от молнии устройством громоотвода. Однако, в этой области естествознания трудились и российские ученые М.В. Ломоносов и Г.В. Рихман. М.В. Ломоносов первый показал присутствие электричества в атмосфере, когда нет грозы.

Исследования в области теории электричества отмечены трудами Франца Ульриха Теодора Эпинуса (1721—1802), который обнаружил явление электризации проводника от одного только приближения наэлектризованного тела («электричества через влияние») и открыл явление электризации турмалина при нагревании («пироэлектричество») и Шарля Огюстена Кулона, создавшего основы электростатики. В частности Ш. Кулоном в ходе исследования кручения тонких металлических нитей им был построен тончайший экспериментальный прибор — крутильные весы, служащие для измерения малых сил.

Основное отличие этого периода ─ формирование тенденции математического рассмотрения электрических явлений.

Таким образом, в Западной Европе в XVIII в. происходит бурное развитие естественных и гуманитарных наук, чему во многом способствовало ускоренное капиталистическое развитие наиболее развитых стран в экономической сфере и господство идеологии Просвещения с ее рационализмом в духовной сфере. В связи с падением влияния церкви препятствий для развития науки больше не было. Развитие научной мысли в XVIII в. связано с математизацией и расширением экспериментальной основы естествознания. Усиливается дифференциация наук, как самостоятельная наука возникает химия, в математике и физике возникают самостоятельные направления исследований. К рассматриваемому периоду относится становление технических наук, в частности прикладной или практической механики, занимающейся непосредственно изучением работы машин, механизмов и сооружений, а также разработкой методов их расчета. Развитию технических знаний во многом способствовал выпуск технической литературы, из которой особенно выделяется труд французских ученых Д. Дидро и Ж. Д'Аламбера «Энциклопедия, или Толковый словарь наук, искусств и ремесел», вышедший в 1779 г. В нем описано состояние техники XVIII в., ее материальные и научные основы.
13. Классическая наука XIX в.
14. Неклассическая наука.
15. Постнеклассическая наука.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: