Береговые открытые водосбросы.




Открытые береговые водосбросы состоят из подводящего канала, головной части в виде водосливной плотины, регулирующей сбрасываемый расход, сопрягающего сооружения и отводящего канала. Иногда между водосливной плотиной и сопрягающим сооружением устраивается промежуточный канал. Ось водосбросного тракта стремятся трассировать перпендикулярно горизонталям по возможности прямолинейной, что дает минимальную его длину.

Трасса водосброса может быть криволинейной, она может проходить в пределах плеча плотины или вне ее.

По выбранной трассе водосбросного тракта на миллиметровой бумаге в масштабе строится продольный профиль дневной поверхности. На профиль наносятся все элементы водосброса таким образом, чтобы основания всех сооружений располагались на прочном коренном грунте при минимальных объемах земляных работ по устройству котлованов под сооружения водосброса.

Подводящий канал должен обеспечивать плавный подвод воды к водосливу. В плане он обычно имеет криволинейное очертание. При больших глубинах канал может выполнятся с горизонтальным дном, а при малых глубинах - с обратным уклоном, что обеспечивает более равномерный и плавный вход в него воды. Поперечное сечение подводящего канала трапецеидальное с заложением откосов от 1,5 до 2,5 в нескальных грунтах и от 0,5 до вертикальных - в скальных. Если скорость потока в канале превышают допустимые по размыву, дно и откосы его укрепляются каменной наброской или бетонными плитами.

Головная часть представляет собой водосливную плотину с широким порогом прямолинейного очертания в плане. Водосливной фронт плотины делится быками на отдельные водосливные отверстия, перекрываемые рабочими и ремонтными затворами. Стандартные размеры водосливных отверстий приведены в табл.4.1.

Таблица 4.1

Пролет (ширина) отверстия, b, м     0,4 0,6 0,8 1 1,25 1,5 1,75 2 2,25 3 3,5 4 4,5 5 6 7 8 10 12 14 16 18 20 22 24 27 30
Высота отверстия, H, м   0,6 0,8 1 1,25 1,5 1,75 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 10 11 12 13 14 15 16

 

Гидравлический расчет водосливной плотины с широким порогом состоит в определении размеров (ширины и высоты) водосливных отверстий, их количества и проверки пропускной способности принятых размеров водосливных отверстий по формуле:

Q = sn emnb (4.8)

где sn - коэффициент подтопления водослива;

e- коэффициент бокового сжатия;

m - коэффициент расхода водослива;

H0 - напор на водосливе с учетом скорости подхода;

g - ускорение свободного падения;

n - количество водосливных отверстий;

b - ширина водосливного отверстия.

В первом приближении принимают sn = 1,0, e = 1,0,

m = 0,32...0,38 и H0 = H. Величиной H задаются в пределах 2...5 м в соответствии со стандартными размерами отверстий (табл. 4.1).

Подставляя в формулу (4.8) ориентировочные значения s, e, m и H определяют величину n.b. По найденной величине, в соответствии со стандартными размерами отверстий (табл. 4.1) и учитывая, что по условиям эксплуатации количество водосливных отверстий следует принимать не менее трех назначают ширину водосливного отверстия и их количество.

После определения высоты (H), ширины (b) и количества водосливных отверстий производится проверка пропускной способности проектируемой плотины.

Для этого необходимо уточнить значения H0, m, e и sn.

Напор с учетом скорости подхода определяется по зависимости

Н0 = Н + , (4.9)

где g - ускорение силы тяжести, принимаемое равным 9,81 м2/с;

a - коэффициент Кориолиса, равный 1...1,1;

V0 - скорость подхода, равная средней скорости в ВВ в сечении, отстоящем от напорной грани водослива на расстоянии (3...5) Н.

Если непосредственно за головной частью устраивается сопрягающее сооружение (быстроток, перепад и т.д.), то водосливная плотина с широким порогом будет неподтоплена и коэффициент подтопления sn = 1.

Коэффициент бокового сжатия для водосливов с широким порогом рекомендуется определять по А.Р. Березинскому [10]

 

e = 1 - , (4.10)

где р - высота водослива;

a = 0,1 - при плавном очертании быков и устоев;

a = 0,19 - при их прямоугольном очертании;

b - ширина водосливного отверстия;

d - толщина бычка.

Толщина неразрезного бычка

d = d0 + 2n, (4.11)

здесь d0 ³ 0,8 м - толщина суженного пазами перешейка быка;

n = - глубина паза рабочих затворов;

 

m = () b - ширина паза рабочих затворов.

В случае разрезного быка толщина его, вычисления по (4.11), увеличивается на 0,5...1,0м.

Формула (4.10) справедлива при

> 0, 2 и <3, при < 2 следует принимать = 0,2, а при > 3 - принимать = 3.

Для водоемов с широким порогом при 2,5 £ £10 и

0 £ £ 3 коэффициент расхода определяется по А.Р.Березинскому [10]:

- при закругленном входном ребре

m = 0,36 + 0,01 (4.12)

- при прямоугольном входном ребре

m = 0,32 + 0,01 (4.13)

Уточнив таким образом все выше перечисленные параметры, производят проверку пропускной способности принятых размеров водосливных отверстий

Q = snmenb H03/2³ Qр.п. (4.14)

Если сопрягающее сооружения располагается непосредственно за водосливной плотиной (промежуточный канал отсутствует), то устройство для гашения кинетической энергии сбрасываемого потока не устраивается. При наличии промежуточного канала необходимо выполнить расчет сопряжения бьефов (за бытовую глубину в НБ водослива принимается расчетная глубина воды в канале) и предусмотреть устройства для гашения энергии сбрасываемого потока.

Промежуточный канал проектируется в том случае, когда продольный профиль дневной поверхности по оси водосбросного тракта имеет небольшой уклон и устройство сопрягающего сооружения непосредственно за водосливом ведет к резкому увеличению объемов земляных работ в котлованах сооружений. Уклон дна канала принимается меньше критического, расчет выполняется по формулам равномерного движения воды. Поперечное сечение промежуточного канала трапецеидальное, дно и откосы которого могут крепиться каменной неброской или бетонными плитами в зависимости от скорости потока и геологических условий.

Сопрягающее сооружение в береговых открытых водосбросах низко- и cредненапорных гидроузлов устраиваются в виде быстротоков, быстротоков с усиленной шероховатостью, консольных перепадов и многоступенчатых перепадов.

4.2.1. Быстроток выполняется в виде бетонного или железобетонного лотка с прямоугольным, трапецеидальным или полигональным поперечным сечением (рис. 4.1б). Уклон дна быстротока принимается всегда больше критического и наиболее часто задается в пределах 0,05...0,25. Ширина быстротока может быть постоянной или переменной, что обуславливается как условиями гашения энергии в нижнем бьефе, так и возможностью некоторого сокращения объемов работ.

В быстротоках небольшой ширины на нескальном основании стенки и днища представляют собой монолитную неразрезную конструкцию докового типа. В широких быстротоках боковые стенки отрезаются от днища деформационными швами. Толщина днища принимается 0,3... 0,8 м, стенки и днище по длине лотка разрезаются деформационными швами через 20...25 м.

В прочных скальных породах бетонная облицовка не устраивается, а в слабых скальных и полускальных породах дно и откосы быстротока покрываются заанкеренной бетонной облицовкой толщиной 0,2... 0,3 м.

В плане быстротокам необходимо придавать прямолинейное очертание, но иногда для уменьшения объемов строительных работ устpaивают быстротоки с виражом. На криволинейном участке дну быстротока придается поперечный уклон, вогнутая боковая стенка его делается большей высоты, чем выпуклая.

В быстротоках большой ширины, а также на криволинейных участках без поперечного уклона дна, для обеспечения устойчивости потока в поперечном направлении устраивают продольные раздельные стенки.

При высоком положении уровней фильтрационного потока по трассе быстротока устраивается дренаж под днищем и за боковыми стенками. Чаще всего применяется трубчатый дренаж.

Превышение боковых стенок быстротока над уровнем воды в нем (кривая свободной поверхности воды в быстротоке устанавливается гидравлическим расчетом) принимается по табл. 4.2.

Таблица 4.2

Расход в быстротоке, м3/с       1…10     10…30     30…50     50…100    
Превышение боковых стен над уровнем воды, см            

Гидравлический расчет быстротока при заданных параметрах поперечного сечения, длины и уклона дна заключается в построении кривой свободной поверхности потока и определении максимального значения его скорости, а также расчете сопряжения бьефов и выполняется в следующем порядке:

Глубина воды на входе в быстроток (h1) принимается равной критической глубине

h1 = hкр = , (4.15)

где a = 1...1,1;

Q - расход в быстротоке;

bб - ширина быстротока.

 

2. Глубина воды на выходе из быстротока определяется из уравнения Б.А. Бахметьева

= h2 - h1 - (1 - j)[ j(h2) - j(h1)], (4.16)

где i0 - уклон дна быстротока;

l - длина быстротока;

h0 - нормальная глубина (при равномерном движении потока на быстротоке);

 

h1 = , h2 = - относительные глубины в начале и в конце быстротока;

j(h1), j(h2) - функции относительных глубин, определяемые по таблице 9.3 с 111 [6];

j =

- смоченный периметр.

3. Подбором, задаваясь рядом значений глубины потока на быстротоке, определяют нормальную глубину из условия равенства модуля расхода, вычисленного по зависимостям

k = (4.17)

k = wc (4.18)

Величина j определяется по средним значениям c, bб и c в начале и в конце быстротока, принимая в первом приближении глубину в конце быстротока h2 = h0

j = (4.19)

Гидравлический показатель русла х определяется из соотношения модулей расхода и глубин в начале и в конце быстротока

(, (4.20)

По таблице 9.3 [6] определяются значение функции j(h1)

и все найденные величины подставляются в уравнение (4.16), решая подбором которое определяют значение функции j(h2).

7. По найденному значению j(h2) определяется относительная глубина h2 и находится глубина воды в конце быстротока h2.

8. Максимальная скорость в конце быстротока определяется по зависимости

Vmax = , (4.21)

 

величина которой не должна превышать допустимого значения, равного 14...15м/с.

9.Глубина в конце быстротока принимается в качестве первой сопряженной (h2 = h') и определяется вторая сопряженная глубина

 

(4.22)

Если , где hнб -глубина воды в нижнем бьефе при пропуске расчетного паводкового расхода, (определяется по кривой связи Q = f(h), то гидравлический прыжок будет затоплен и не требуется устанавливать гасители кинетической энергии потока на водобое. Если , то для затопления гидравлического прыжка необходимо запроектировать гаситель кинетической энергии потока (водобойный колодец или стенку).

Глубина водобойного колодца определяется как

dк = - Dz, (4.23)

где Dz - перепад, образующийся при выходе потока из колодца в НБ. На практике величиной Dz можно пренебречь, выполняя расчет с "запасом". Длина водобойного колодца, когда струя входит в колодец не отрываясь от сливной грани (без уступа), определяется по формуле

lк = (0,75...1)lпp, (4.24)

а длина водобоя при отсутствии на нем гасителей кинетической энергии потока равна

l в= (1...1,25)lпp, (4.25)

где lпр - длина гидравлического прыжка

lпр = 5( - h2), (4.26)

 

 

На скальных грунтах при значительных скоростях в конце быстротока чаще всего применяются трамплины для отброса струи в НБ.

Быстроток с усиленной шероховатостью. В том случае, когда скорость потока на быстротоке превышает допустимую, а уменьшение его уклона нецелесообразно, устраивается быстроток с усиленной шероховатостью. Искусственная шероховатость выполняется в виде поперечных ребер, прямолинейных, ломаных или зигзагообразных, устраиваемых на дне, а иногда и на боковых стенках лотка быстротока.

Расчет ребристой донной шероховатости квадратного сечения (D´D) с расстояниями между осями ребер d = 8D и при iкр < i0<0,6 выполняется по методу О.М.Айвазяна. Расчет, ведется для условий равномерного движения по зависимостям:

1 - = i0 (4.27)

= 0,04 + 2,29i02 + Ki00,1 , (4.28)

где Q - расчетный расход,

V- скорость потока на быстротоке;

D - высота ребер усиленной шероховатости;

i0 - уклон дна быстротока;

w,c,R - соответственно площадь живого сечения, смоченный

периметр и гидравлический радиус потока;

К - опытный коэффициент, зависящий от типа шероховатости (К = 0,88 - для прямолинейных ребер; К = 1,85- для зигзагообразных ребер).

Порядок расчета. Задаются значения скорости потока на быстротоке для условий его равномерного движения v = 6... 8 м/с. По формуле (4.27) находится глубина потока, а по (4.28) вычисляется высота ребер искусственной шероховатости.

Консольный перепад. В состав консольного перепада входят лоток быстротока и консольная часть, служащая для отброса

струи воды на безопасное расстояние с точки зрения подмыва сооружения (рис.4.2б). Чаще всего консоль располагается горизонтально, иногда ей придается обратный уклон от 00 до 150. Длина обычно 1...2 м. В зависимости от геологических условий и размеров консоли конструкция ее опор может быть свайной, стоечной или рамной. Подошва крайних опор назначается ниже дна воронки размыва.

Гидравлический расчет консольного перепада заключается в расчете быстротока, определении дальности полета струи и размеров воронки размыва.

Дальность полета струи при горизонтальной консоли

 

L1 = 0,45jV , (4.29)

где j - коэффициент скорости;

h - глубина воды в конце консоли (принимается равной глубине, вычисленной в конце быстротока h2);

V - скорость в конце быстротока;

р - высота падения струи.

В случае если консоль имеет обратный уклон, дальность полета струи

l1 = j , (4.30)

где b - угол наклона консоли к горизонту.

Скорость входа падающей струи в воду воронки размыва

V0 = , (4.31)

где Vx, Vy - горизонтальная и вертикальная составляющие скорости входа в воронку размыва, м/с.

Горизонтальная составляющая определяется по формуле

Vx = jV, (4.32)

а вертикальная - по формуле

Vу = j . (4.33)

Угол наклона струи, входящей в воронку размыва, к горизонту

tga = Vу/Vх = . (4.34)

Длина растекания падающей струи в воронке размыва

L = 1,4qlg , (4.35)

 

где q - удельный расход в месте падения струи в воду воронки размыва, м2/с; Vдоп - допустимая скорость для грунта в воронке размыва, м/c; К = 0,7...0,8 - коэффициент уменьшения допускаемой скорости.

Наибольшая глубина воды в воронке размыва

t = АКр = , (4.36)

где А - коэффициент аэрации;

Кр - коэффициент размыва.

Коэффициент аэрации в зависимости от глубины воды (h) и скорости (V) в конце консоли принимается по таблице 4.3.

 

Коэффициент аэрации А

Таблица 4.3

h,м Значения А при V, м/c
           
0,2 0,70 0,64 0,62 0,61 0,60
0,5 0,88 0,71 0,66 0,63 0,52
0,7   0,90 0,70 0,66 0,64

 

Коэффициент размыва в зависимости от рода грунта и угла наклона струи, входящей в воронку размыва, принимается по таблице 4.4.

Коэффициент размыва Кр

Таблица 4.4.

Род грунта Значения Кр при a0
             
Очень слабые грунты (плывуны) 1,4 1,8 2,4 2,8 3,3 4,5
Прочие грунты и скала (после длительного размыва) 1,4 1,7 2,0 2,4 2,7 3,3

 

Глубина воронки размыва (от дна отводящего канала)

t1 = t – hНБ, (4.37)

 

4.2.4. Многоступенчатый перепад устраивается при значительных (более 0,25) уклонах местности по трассе водосброса. Многоступенчатый перепад представляет собой ряд ступеней из одинаковых по размерам колодцев, образованных продольными (боковыми) и поперечными (водобойными) стенками (рис.4.2а). Размеры колодцев и высоты водобойных стенок определяются на основании гидравлического расчета из условия полного гашения энергии потока.

Высота ступеней обычно назначается 2...4 м. Для лучшего гашения энергии потока дну колодца может придаваться обратный уклон.

На нескальных и полускальных грунтах продольные и. поперечные стенки отделяются от водобойной плиты вертикальными деформационными швами. Все швы оборудуются противофильтрационными уплотнениями. Толщина водобойной плиты и стенок определяется расчетам на устойчивость, предварительно назначая их в соответствии со следующими рекомендациями:

водобойная плита - 0, 5...1,0 м;

продольная стенка: поверху - 0,3...0,7 м;

понизу - 1...2 м;

водобойная стенка: поверху - 0,5...0,7 м

понизу - 1,2...2,0 м.

В скальных породах водобойные плиты могут не устраиваться или может выполняться выравнивающая облицовка толщиной 0,3…0,4 м.

В многоступенчатых перепадах гидравлический расчет (определение длины ступени и высоты водобойной стенки) выполняется только для первой, второй и последней ступеней (размеры всех остальных ступеней принимаются такими же как, размеры второй ступени) в следующей последовательности:

Глубина на ступени в сжатом сечении (h1) определяется подбором по формуле

Q = jh1b (4.38)

и принимается в качестве первой сопряженной глубины

где Q - расчетный расход;

b - ширина перепада;

Р - высота ступени перепада;

Н0 - напор на ступени с учетом скорости подхода определяется по (4.4)

 

j - коэффициент скорости, принимаемый в зависимости от высоты ступени по таблице 4.5

 

Таблица4.5

Р,м          
j 0,97...0,96 0,95...0,91 0,91...0,88 0,88...0,86 0,86...0,85

 

Сопряженную с() глубину () находят по формуле (4.22)

Глубина воды над порогом водослива в начале следующей ступени (H1) определяется как

H1 = H0 - , (4.39)

 

где H3/20 = (4.40)

здесь: V0 = - скорость подхода;

e = 0,97 - коэффициент бокового сжатия потока;

М = m = 1,62

Глубина водобойного колодца на ступене равна

d = - H1 (4.41)

5. Длина ступени перепада (водобойного колодца) равна

L = l1 + lпр, (4.42)

 

где дальность полета струи

l1 = j . (4.43)

lпр - длина прыжка, определяемая по формуле (4.26).

При расчете последней ступени перепада глубина водобойного колодца определяется по зависимости (4.23), а длина водобоя по (4.24) и (4.25).

Отводящий канал устраивается между сопрягающим сооружением и руслом реки. Канал выполняется в выемке таким образом, чтобы дно его сопрягалось с дном реки. Дно отводящего канала может быть горизонтальным или ему может придаваться уклон меньше критического. Гидравлический расчет канала производится по формулам равномерного движения воды. Если скорости потока в канале превышают допустимые по размыву, дно и откосы его укрепляются.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: