Измерение длины самоаффинных фрактальных кривых, являющихся графиками функций




Самоаффинные фрактальные множества II. Размерности длины и поверхности

 

Введение

Представляется соблазнительным попытаться измерить длину кривой с помощью измерительного циркуля, последовательно уменьшая его раствор, или измерить площадь поверхности с помощью все более и более мелкой триангуляции. Для обычных кривых такая процедура дает хороший результат. В то же время известно, что уже для обычных поверхностей (например, для цилиндра) возникают аномалии; основная аномалия проявляется в так называемом парадоксе площадей Шварца, который заслуживает широкой известности и будет обсуждаться ниже. Для самоподобных кривых эта процедура снова приводит к фрактальной размерности. Попытаемся использовать такую процедуру для самоаффинных фракталов и покажем, что размерности, к которым она приводит, отличаются от массовой и клеточной размерностей.

Измерение длины самоаффинных фрактальных кривых, являющихся графиками функций

2.1. Измерение длины с использованием «сосиски» Минковского дает локальную и глобальную размерности, совпадающие с DML и DMG

Следуя Минковскому и Булигану, определим приближенную длину кривой В(), используя «сосиску» Минковского, содержащую все точки на расстоянии, меньшем чем , от данной точки кривой. Для обычной спрямляемой кривой и при << 1 В() = (2 )-1 (площадь сосиски). Для самоподобной кривой (см. [2], с. 36) B()~ 1-D, для самоаффинной кривой площадь сосиски при малых ведет себя как N () -2 ~ H, и поэтому локальная размерность равна 2— Н. Глобальная размерность равна 1. Оба этих значения встречались в части I данной статьи.

2.2. Нахождение длины с помощью измерительного циркуля при фиксации последнего выхода кривой дает локальную и глобальную размерности, совпадающие с DML и DMG

В одном из многих методов нахождения длины спрямляемой кривой используется измерительный циркуль, перемещающийся вдоль кривой. На кривой могут быть узлы, т. е. кратные точки произвольного порядка; достаточно, чтобы точки кривой были упорядочены, например «во времени». Начнем с исходной точки р0. Первая точка Р1 будет первым выходом кривой из круга с центром в ро и радиусом и т. д. Если обозначить через L() длину возникающей ломаной линии, приближенно описывающей нашу кривую, то длина кривой будет lim 0 L().

Можно выбрать в качестве P1 точку последнего, а не первого выхода вдоль кривой. И можно также двигаться назад.

Для самоподобной кривой находим L() ~ 1-D, и снова по желанию можно отмечать либо первый, либо последний выход кривой.

Для наших самоаффинных кривых ситуация оказывается совершенно иная. Кроме локальной размерности при 0 имеется также глобальная размерность, которая, как мы увидим, равна 1. И локальная размерность, полученная при помощи измерительного циркуля, имеет два совершенно различных значения, одно для последних, а другое для первых выходов. Прежде чем двигаться дальше, заметим, что для самоподобных функций рассмотрение становится проще (а результаты не меняются), если круг с центром в точке Pk заменить квадратом.

Если воспользоваться этим обстоятельством, то рассмотрение последних выходов становится простым. Покроем нашу кривую (b''k)2-H квадратами со стороной (b")k< <1; это дает D>2—H. Далее добавим кольцо из 8 таких же квадратов вокруг каждой ячейки и тем самым увеличим сторону втрое. Ясно, что (b"k)2-H шагов циркуля с раствором 3(b")-k достаточно, чтобы пройти вдоль кривой, поэтому размерность, полученная с помощью измерительного циркуля, меньше 2— Н. Следовательно, она равна 2-H.

2.3. Нахождение длины с помощью измерительного циркуля при фиксации первых выходов дает «аномальные размерности». Локальное значение размерности при малых равно 1/Н. Эта величина совпадает с фрактальной размерностью фрактального следа, связанного с функцией. Для больших п размерность равна 1

В этом разделе приведены результаты, полученные в работе [I].

При >> t с (например, когда единица измерения ВH достаточно мала) график по сути дела близок к горизонтальной линии. При передвижении измерительного циркуля вдоль кривой

он в основном остается параллельным оси t, и L() слабо меняется с изменением . Если считать, что L()~ 1-D, тогда то обстоятельство, что L() является константой, дает для глобальной размерности значение 1 независимо от Н.

Если, наоборот, << tc (например, когда единица измерения ВH велика), то ситуация оказываетя иной: измеритель, передвигающийся вдоль кривой, в основном остается параллельным оси В. В результате получаем размерность, равную 1 /Н.

Это чрезвычайно странное значение может превышать 2 и является аномальным вдвойне: оно противоречит значению 2- Н, которое получалось при других локальных определениях фрактальной размерности. С другой стороны, те, кто знакомы с фрактальным броуновским движением, могут отождествить 1/Н с фрактальной размерностью следа (в некотором E-мерном евклидовом пространстве RE при Е > 1/Н) движения, для которого координаты Е представляют собой независимые реализации Вн(t).

В этом случае попытка использовать необычный путь для измерения фрактальной размерности для одного множества в действительности заканчивается измерением значения, которое все пути дают для некоторого другого множества.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: