Реализация функциональных операций




Простейший случай использования аспекта – реализация некоторого функционального требования, необходимого разным (не имеющим общего базового) классам. В этом случае аспект становится похож на статический класс-утилиту (utility class), с более четко формализованным в проекте правилом его использования.

Для примера рассмотрим класс, хранящий некоторое значение и его метку времени, имеющий два полиморфных метода записи нового значения: один с передаваемой меткой времени, другой – без нее. Тогда в случае, когда метка времени не передана, необходимо определить текущее время системы и записать его. Для этих целей введем аспектный класс TimeStamping. Его можно показать на диаграмме классов (рис. 1а), при этом мы показываем связанность аспекта не с одним, а с группой классов, объединяет которые в данном случае только необходимость получения значения текущего времени. То, что в принятой нотации группа моделируется как вариант класса, а не пакета UML, позволяет указать для нее методы, подразумевая, что они присутствуют во всех классах, составляющих группу. (Здесь и далее мы задаем имя группы Signal, подчеркивая, что оперируем с множеством классов, хранящих значение некоторого аналогового, дискретного, логического измерения; единицу справочной информации или производную от этих значений величину). Диаграмма взаимодействия (рис. 1б) показывает последовательность выполняемых операций после выполнения связывания (генерации программного кода). При вызове метода SetValue(value) происходит “пересечение”; мы показываем это тем, что на “линии жизни” объекта класса Signal не отмечен фокус управления, который сначала переходит экземпляру аспектного класса, и только потом возвращается им.

Рис. 1. Реализация функциональных операций аспектным классом.

Другой пример связывания некоторого аспекта с каждым из некоторого набора объектов в индивидуальности – необходимость отслеживать факт изменения хранимого значения. Перехват вызова метода записи нового значения позволяет установить флаг наличия изменения. Программе-серверу, обрабатывающему запросы внешних систем на получение измененных данных, достаточно будет анализировать состояние данного флага, а не выполнять сравнения хранимых копий предыдущих переданных значений с текущими.

Синхронизация расчетов и изменений

В базах данных ДП АСУТП часто выполняемой операцией является расчет агрегированных значений; например, определение максимального значения из множества или расчет мгновенного расхода жидкости или газа, используя оперативные данные о давлении, его перепаде на диафрагме и температуре, а также ряд заданных нормативных поправочных коэффициентов. В модели мы можем отобразить это, установив ассоциацию один-ко-многим (часто соответствующей отношению контейнер-элемент) и использовав класс-ассоциацию Multiplexer (в который заложена логика преобразования нескольких исходных значений в одно производное). Объекты-элементы являются источниками данных для своего контейнера, в свою очередь, некоторая подсистема опроса систем автоматики является источником оперативных данных для них самих. Эти взаимосвязи можно показать, используя диаграмму классов UML (см. рис. 2).

Рис. 2. Типовые отношения классов БД ДП АСУТП.

В системе, управляемой событиями, при изменении хотя бы одного из значений, участвующих в расчете результата и хранящихся в объектах-элементах, должен происходить пересчет формулы и запись нового расчетного значения в объект-контейнер. Рассмотрим для примера расчет некоторого состояния по двум исходным логическим сигналам “открыт”, “закрыт” (см. рис. 3).

Рис. 3. Вариант алгоритма перерасчета агрегированного значения.

В рассмотренном алгоритме есть упущение – перерасчет результата происходит при поступлении первого же из изменений. В случае, когда произошло изменение обоих значений, выполнение промежуточного расчета формулы агрегирования с использованием одного нового и одного устаревшего значения избыточно, и, скорее всего, ошибочно. При этом мы не можем заранее утверждать, что всегда при поступлении нового значения одного из сигналов поступает и новое значение другого. Т.о., мы приходим к требованию отслеживать режим поступления обновлений. Для решения этой задачи можно предложить блокировать источником данных передачу сообщений об изменении значений в объектах-элементах на период записи всего множества поступивших обновленных значений. Тогда события об изменении поступят в класс-контейнер после записи обеих новых значений и расчет будет выполнен два раза, но с актуальными данными. (Будучи уверенным, что при поступлении первого же из извещений актуальны оба значения, можно сократить количество перерасчетов до одного).

Однако проблема остается, если источник данных – не один объект, а множество, и на диаграмме мы рассматриваем связь “многие-ко-многим”. (Задача часто возникает при реализации субъектно-ориентированного подхода к проектированию базы данных ДП АСУТП, при котором вводится множество классов, содержащих наборы нормативно-справочных данных, описывающие один и тот же производственный объект при различных точках зрения (принципах декомпозиции предметной области), но которым требуется разделять оперативные данные о его состоянии). Передача (копирование) данных из источников получателям приводит к необходимости поддержания целостности.

Здесь мы приходим к классической ситуации введения аспекта – реализация в отдельном классе-источнике или получателе данных алгоритма отслеживания взаимодействия других пар объектов и синхронизации с ними исключительно затруднена. Цель – обеспечить синхронизацию обновления данных; желаемое поведение аспекта – реализовать “конвейерную передачу” обновлений по уровням иерархии и между поддеревьями БД.

Рис. 4. Введение аспекта TransferSynchronizing для управления передачей данных.

Сначала определим “точку пересечения”. Она одна – аспект перехватывает управление при попытке выполнения каким-либо из объектов-источников записи одного или нескольких новых значений; блокирует обработку новых значений в объектах-получателях, дает завершиться перехваченным методам SetValue(…), после чего ожидает в течение заданного интервала времени выполнения аналогичных действий другими объектами-источниками (см. рис. 4). По истечении времени ожидания происходит разблокирование всех объектов-получателей, в которые были записаны новые значения. Данная логика показана на рис. 5; отношение “многие-ко-многим” классов-источников и получателей данных рассматривается как множество отношений “один-ко-многим” их экземпляров. (Мы рассматриваем множества объектов – экземпляров некоторых классов, объединенные в две группы по их роли в частном информационном взаимодействии: источников и получателей данных; стереотипы “source” и “receiver” являются производными от базового “group”. Имена групп (при отличии стереотипа) совпадают, что подчеркивает единообразие входящих в них классов).

Рис. 5. Выполнение передачи данных при введенном аспекте TransferSynchronizing.

Отметим, что не требуется вводить точку пересечения с классом-получателем данных, поскольку нет необходимости перехватывать все выполняемые вызовы изменения данных в нем, а также использование стереотипа “around” для метода OnSetValue() аспектного класса: часть служебных операций выполняется до исполнения вызова SetValue(…), часть – после. Предложенное решение все еще содержит ряд недостатков: объект-источник зависим от реализации объекта-получателя; введение периодов ожидания плохо согласуется с событийной моделью; объект-получатель должен проверять попадание разности нового и предыдущего значений в “зону нечувствительности”; его структура усложняется средствами поддержки блокировок. Можно предложить вариант, свободный и от данных недостатков.

Для этого определим, что у каждой группы есть менеджер – экземпляр аспектного класса, выполняющий контракты каждого из классов группы, в т.ч. и вызов метода SetValue(…) для записи измененного значения в класс-получатель. Это позволяет также выполнять операции блокирования/разблокирования только по отношению к этому аспектному классу. На него же может быть переложено выполнение проверки “существенности” отличия нового значения от текущего в объекте. Тогда желаемое поведение, реализующее транзакционный подход к передаче массива данных, можно отобразить в виде:диаграммы (см. рис. 6). (На диаграмме показано взаимодействие только двух групп, хотя, разумеется, объекты и даже единственный объект группы-источника может являться записывать данные в несколько объектов, в т.ч. принадлежащих различным группам.) Поскольку, как отмечалось выше, каждая из групп может играть роль как источника, так и получателя данных, то на диаграмме классов достаточно показать связь аспекта и одной группы (см. рис. 7а).

Диаграмма, показывающая внутреннюю логику аспекта при разблокировании, приведена на рис. 7б. Отметим, что возможно одновременная блокировка группы несколькими менеджерами групп-источников: запись различных данных в один и тот же объект в любом случае не имеет смысла, а одновременная запись значений в различные объекты заблокированной группы несколькими источниками не приводит ни к каким отрицательным последствиям.

Рис. 6. Выполнение передачи данных при введенном аспекте GroupManager.

Рис. 7. Структура и внутренняя логика аспектного класса GroupManager.

Взаимодействие с подсистемой информационного обмена

Взаимодействие “объект БД – модуль информационного обмена с внешними системами (далее – сканирования)” в ряде баз данных ДП АСУТП настраивается с использованием “списка сигналов”: в табличной форме объединяются индивидуальные параметры опроса каждого сигнала (тип данных, адрес в контроллере, периоды периодических опросов значений и изменений и т.п.). В других системах данная параметрическая информация сохраняется в самом объекте БД. Оба этих подхода обладают тем недостатком, что не используют естественно напрашивающую предположение об одинаковости параметров (коммуникационных, преобразования “сырых” данных) для однотипных объектов БД, т.е. экземпляров одного класса. Поэтому в данном случае аспектный класс используется как расширитель структуры класса БД (это отмечено отношением зависимости со стереотипом “extend”): он содержит таблицы соответствий класса и параметров сканирования, класса и правил преобразования полученных данных, а также список соответствий индивидуальных объектов и адресов во внешней системе (или правила получения адресов по имени объектов).

С другой стороны, от различных модулей сканирования требуется обеспечивать однотипное поведение при определенных событиях; например, качество значений всех объектов БД, получающих данные от внешней системы, с которой потеряна связь, должно быть установлено в “недостоверное”. Аспектный класс “пересекает” операции модуля сканирования, результаты которых влияют на прочие объекты БД, и реализует единообразную логику для различных приложений информационного обмена.

Заключение

Иерархия классов отражает уровни абстракции сущностей предметной области, иерархия объектов (в БД ДП АСУТП) является информационной моделью автоматизируемого производства, технологического процесса. Для отражения различных точек зрения возможно разделение классов и построение нескольких подмоделей, используя различные принципы декомпозиции. Применение методов аспектно-ориентированного программирования позволяет отделить средства реализации контрактов каждого из классов (механизмов поддержки в них различных ограничений и требований к информационной системе в целом) от описываемых ими абстракций сущностей, за счет чего повысить степень надежности БД, производительность обработки и передачи данных, возможность повторного использования проектных решений.

Рис. 8. Настройка взаимодействия и обработка событий подсистемы информационного обмена.

Список литературы

Богданов Н.К. Тиражируемые программные комплексы для создания АСУТП. // Промышленные АСУ и контроллеры. 2000. №12. – С. 35-39

Буч Г., Рамбо Д., Джекобсон А. Язык UML. Руководство пользователя. М.: ДМК Пресс, 2000. – 432 с.

Шукла Д., Селлз С.Ф.К. АОП: Более эффективная инкапсуляция и повторное использование кода. // MSDN Magazine/Русская редакция. 2002. Спецвыпуск №1.

Aldawud, O., Elrad, T., Bader, A. A UML Profile for Aspect-Oriented Modeling. In proc. of Aspect-Oriented Programming Workshop at OOPSLA, 2001.

AspectJ Home Page. https://www.aspectj.org

Clarke, S. Composing Design Models: An Extension to the UML. In proc. of International Conference on the UML, 2000, pp. 338-352.

Clarke, S. Extending Standard UML with Model Composition Semantics. // Science of Computer Programming. Vol. 44, Issue 1 (July 2002), pp. 71-100

Clarke, S., Walker, R. Composition Patterns: An Approach to Designing Reusable Aspects. In proc. of ICSE 2001.

Harrison, W., Tarr, P., Ossher, H. A Position On Considerations in UML Design of Aspects. In proc. of Workshop on Aspect-Oriented Modeling with UML at AOSD, 2002.

Ho, W., Pennaneac'h, F., Jezequel, J., Plouzeau, N. Aspect-Oriented Design with the UML. In proc. of Multi-Dimensional Separation of Concerns Workshop at ICSE, 2000, pp. 60-64

Jezequel, J., Plouzeau, N., Weis, T., Geihs, K. From Contracts to Aspects in UML Designs. In proc. of Workshop on Aspect-Oriented Modeling with UML at AOSD, 2002.

Kande, M.M., Kienzle, J., Strohmeier, A. From AOP to UML - A Bottom-Up Approach. In proc. of Workshop on Aspect-Oriented Modeling with UML at AOSD, 2002.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., Irwin, J. Aspect-Oriented Programming. In proc. of ECOOP, 1997, LNCS 1241, pp. 220-242

Meyer, B. Object-Oriented Software Construction. New-York, NY: Prentice Hall, 1988.

Pawlak, R., Duchien, L., Florin, G., Legond-Aubry, F., Seinturier, L., Martelli, L. A UML Notation for Aspect-Oriented Software Design. In proc. of Workshop on Aspect-Oriented Modeling with UML at AOSD, 2002.

Stein, D., Hanenberg, S., Unland, R. Designing Aspect-Oriented Crosscutting in UML. In proc. of Workshop on Aspect-Oriented Modeling with UML at AOSD, 2002.

Suzuki, J., Yamamoto, Y. Extending UML with Aspects: Aspect Support in the Design Phase. In proc. of Aspect-Oriented Programming Workshop at ECOOP, 1999.

Интернет

Workshop on Aspect-Oriented Modeling with UML at AOSD’02. https://lglwww.epfl.ch/workshops/aosd-uml/papers.html

Workshop on Multi-Dimensional Separation of Concerns (ICSE 2000) https://www.research.ibm.com/hyperspace/workshops/icse2000/papers-index.htm

Aspect-Oriented Software Development https://www.aosd.net/

Aspect-Oriented Programming https://www.c2.com/cgi/wiki?AspectOrientedProgramming

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: