Графами называют взаимосвязь двух множеств состоящих из множества вершин и множества рёбер, индуцируемых (связанных) между собой.
Полный граф - это граф, не имеющий петель, кратности ребер, и все его вершины связаны между собой.
Неориентированный граф - граф, не имеющий указания направлений ребер, при переходе из одной вершины в другую.
Ориентированный (полный) граф - граф с ребрами, указывающими конкретное направление при переходе из одной вершины в другую.
Граф-дерево - это слабосвязанный граф, у которого если удалить одно ребро, то он распадается на два графа.
Граф функционирование цифрового автомата представлен на рис.5. Он отражает возможные переходы цифрового автомата.
В узлах графа записываются состояния автомата, стрелками показаны возможные переходы. Над стрелками указаны условия перехода. Выделенные стрелки соответствуют безусловным переходам.
|
а0 а1
а4 а2
| |||
| |||
а3
|
| ||||
Из состояния а0 осуществляется безусловный переход в состояние а1, при этом выполняется микрокоманда Y1.
Из состояния а1 при условии х выполняется переход в а3, а при осуществляется переход в состояние а2
Из состояния а2, и а3 осуществляются безусловные переходы в состояние а4
Из а4 выполняется безусловный переход в а0.
Теория графов имеет большие приложения, так как язык теории, с одной стороны, очевиден, а, с другой стороны, удобен в нормальном исследовании. При полном изображении графа не все детали рисунка имеют одинаковое значение, а именно геометрические свойства рёбер (кривизна, длина и т.д.) и расположение вершин на плоскости относительно друг друга.
|
Две вершины графа автомата ат и as (исходное состояние и состояние перехода) соединяются дугой (ребром), направленной от ат в as. Дуге (ат, as) графа автомата приписывается входной сигнал х и выходной сигнал у, если он определён, и, в противном случае, ставится прочерк. Если переход автомата из состояния ат в состояние as происходит под действием нескольких входных сигналов, то дуге (am, as) приписываются все эти входные и соответствующие выходные сигналы.
При описании автомата Мура в виде графа выходной сигнал y записывается внутри вершины ат или рядом с ней, а входной сигнал х над дугой (ребром), демонстрирующей переход из одного состояния в другое.
При описании автомата Мили в виде графа внутри вершины записывается состояние, в которое переходит автомат, а над дугой (ребром), демонстрирующей переход из одного состояния автомата в другое, записывается дробь, в числителе которой указывается входной сигнал, а в знаменателе - выходной сигнал.
Для задания функций переходов и выходов построим граф-дерево автомата Мура, а затем автомата Мили. При использовании табличного описания автомата Мура таблицы переходов автоматов Мили и Мура совпадут, а таблица выходов автомата Мили получится из таблицы переходов заменой as символом выходного сигнала.
В технических целях используются только детерминированные цифровые автоматы, в которых выполнено условие однозначности переходов: - автомат, находящийся в некотором состоянии, под действием любого входного сигнала не может перейти более чем в одно состояние. Применительно к табличному способу задания описания автоматов это означает, что в клетках переходов/выходов указывается только по одному состоянию/выходному сигналу. Применительно к графическому способу задания описания автоматов это означает, что в графе автомата из любой вершины не могут выходить две или более дуги, отмеченные одним и тем же входным сигналом.
|
Устойчивым состоянием автомата называется такое состояние, что для любого х, d(am, x) = as, имеет место d(as, x) = as. Это значит, что если автомат перешёл в некоторое состояние х, то выйти из этого состояния может только под действием другого сигнала.
Синхронным называется автомат, если он не является асинхронным и каждое его состояние устойчиво. Если для некоторой пары (am, zf) выходной сигнал автомата не определён, то для этой пары не определяется и функция перехода, так как не определено допустимое слово, осуществляющее переход из этого состояния.