Простой и сложный процент. Эффективная годовая процентная ставка




 

Необходимость учета временной стоимости денег проявляется прежде всего в ссудо-заемных операциях. Предоставляя денежные средства в долг, владелец получает доход в виде процентов, начисляемых по некоторому алгоритму в течение определенного промежутка времени. Наиболее распространена годовая процентная ставка, подразумевающая однократное начисление процентов по истечении года после получения ссуды. Известны две основные схемы дискретного начисления.

1. Схема простых процентов, предполагающая неизменность базы, с которой происходит начисление. Если исходный инвестируемый капитал равен Р, требуемая доходность – r, то при использовании данной схемы инвестированный капитал ежегодно увеличивается на P´r. Исходя из этого размер инвестированного капитала через n лет рассчитывается следующим образом:

 

Rn = P + P´r + … + P´r = P ´ (1 + n´r). (2.4)

 

2. Схема сложных процентов, предполагающая, что годовой доход исчисляется не с исходной величины инвестированного капитала, а с общей суммы, включающей также и ранее начисленные, но не востребованные проценты. Здесь происходит капитализация процентов по мере их начисления. Следовательно, размер инвестированного капитала к концу n -го года будет равен:

Fn = P ´(1+r)n. (2.5)

 

Соотношение между Rn и Fn проиллюстрировано на рис. 2.2. Как видим, если капитал инвестируется на срок до одного года (т.е. при 0< n <1), то Rn>Fn; если период инвестирования превышает 1 год (n >1) то Rn>Fn. Таким образом, для лица, предоставляющего кредит на срок ссуды менее 1 года (проценты начисляются однократно в конце периода), более выгодной является схема простых процентов, на срок ссуды более 1 года (проценты начисляются ежегодно) – схема сложных процентов.

Рис. 2.2. Простая и сложная схемы наращения капитала

 

П р и м е р. Рассчитать наращенную сумму с исходной суммы в 1 тыс. руб. при размещении ее в банке на условиях начисления простых и сложных процентов, если 1) годовая ставка составляет 10%; 2) периоды начисления равны 90 дн., 180 дн., 1 год, 5 лет, 10 лет.

Схема начисления 90 дн. (n=1/4) 180 дн. (n=1/2) 1 год (n=1) 5 лет (n=5) 10 лет (n=10)
Простые проценты 1,025 1,05 1,10 1,50 2,0
Сложные проценты 1,024 1,049 1,10 1,611 2,594

 

При расчете процентов за краткосрочную ссуду (т.е. ссуду на срок до одного года с однократным начислением процентов) используют промежуточную процентную ставку, которая равна доле годовой ставки, пропорциональной доле временного интервала в году:

 

R = P´[ 1 + (t/T)´r], (2.6)

 

где t – продолжительность финансовой операции в днях (при определении продолжительности финансовой операции принято день выдачи и день погашения ссуды считать за один день); Т – количество дней в году.

Размер промежуточной процентной ставки может различаться в зависимости от того, чему берется равной продолжительность года, квартала, месяца. При этом различают:

· точный процент, который определяется исходя из точного числа дней в году (365 или 366), в квартале (от 89 до 92), в месяце (от 28 до 31);

· обыкновенный процент, который определяется исходя из приближенного числа дней в году, квартале, месяце (соответственно 360, 90, 30).

При определении продолжительности периода, на который выдана ссуда, также возможны варианты:

· принимается в расчет точное число дней ссуды;

· принимается в расчет приблизительное число дней ссуды (исходя из продолжительности месяца в 30 дней).

В результате расчет может выполняться одним из трех способов:

1) с обыкновенным процентом и точным числом дней (характерен для Франции);

2) с обыкновенным процентом и приближенным числом дней (используется в ФРГ);

3) с точным процентом и точным числом дней (используется в США).

На практике нередко оговаривается не только величина годового процента, но и частота выплаты (например, при выплате дивидендов). В таком случае расчет ведется по формуле сложных процентов с подынтервалами и по ставке, равной пропорциональной доле исходной годовой ставки:

 

Fn = P´( 1 + r/m)n´m, (2.7)

 

где m – количество начислений в году; n – количество лет.

П р и м е р. Вложены деньги в банк в сумме 5 тыс. руб. на два года с полугодовым начислением процентов под 10% годовых. В этом случае начисление производится 4 раза по ставке 5%, а схема возрастания капитала следующая:

Период, мес. Сумма, с которой идет начисление, тыс. руб. Ставка, в долях ед. Сумма к концу периода, тыс. руб.
  5,0 1,05 5,25
  5,25 1,05 5,513
  5,513 1,05 5,788
  5,788 1,05 6,078

 

Представленный в таблице расчет можно сделать по формуле 2.7 при m =2, n =2:

Fn = 5 (1 + 10%:100%:2)4 = 6,078.

Часто встречаются финансовые контракты, заключаемые на период, отличающийся от целого числа лет. В этом случае проценты могут начисляться одним из двух методов:

1) по схеме сложных процентов:

 

Fn = P´ ( 1 +r)w+f, (2.8)

 

2) по смешанной схеме (схема сложных процентов для целого числа лет и схема простых процентов для дробной части года):

Fn = P´ ( 1 +r)w ´( 1 +f´r), (2.9)

 

где w – целое число лет; f – дробная часть года.

Поскольку f <1, то (1 +f´r)>( 1 +r)f, и наращенная сумма, рассчитанная по второму методу, больше.

Если при этом начисление процентов осуществляется по внутригодовым подпериодам, то также можно использовать один из двух методов:

1) по схеме сложных процентов:

Fn = P´( 1 +r/m)m´k( 1 +r/m)f; (2.10)

 

2) по смешанной схеме:

Fn = P´( 1 +r/m)m´k ( 1 +f´r/m). (2.11)

 

Как видим, номинальная процентная ставка может генерировать разные суммы в зависимости от схем начисления процентов. Выгодность разных контрактов определяется по показателю эффективной годовой процентной ставки (re). Она должна обеспечивать такое же наращение, как и исходная схема, но при однократном начислении процентов, т.е. при m =1. Следовательно, ищется схема { P, F1, re, m =1}, равносильная { P, F1, r, m >1}.

Вспомним, что в рамках одного года F1 = P´( 1 +r/m)m. А из определения эффективной ставки следует, что F1 = P( 1 + re). Следовательно,

 

re = ( 1 + r/m)m 1. (2.12)

 

Из формулы 2.12 видно, что эффективная годовая ставка зависит от количества внутригодовых начислений: она растет с ростом m.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-04-14 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: