Конструкция оптического микроскопа. Основные режимы работы.




Микроскоп – это оптический прибор, позволяющий получить обратное изображение изучаемого объекта и рассмотреть мелкие детали его строения, размеры которых лежат за пределами разрешающей способности человеческого глаза

Конструкция микроскопа непосредственно зависит от его назначения. Оптического микроскопна данный момент является наиболее популярным выбором для любителей и профессионалов, с помощью которого можно решить множество исследовательских задач.

Оптические микроскопы также имеют свою классификацию и могут различаться по своему строению. Тем не менее, существует основной набор деталей, которые входят в устройство любого оптического микроскопа.

В микроскопе можно выделить оптическую и механическую части. Оптика микроскопа включает в себя объективы, окуляры, а также осветительную систему. Штатив, тубус, предметный столик, крепления конденсора и светофильтров, механизмы для регулировки предметного столика и тубусодержателя составляют механическую часть микроскопа.

Вначале поговорим об оптической части микроскопа.

Окуляр – это та часть оптической системы, которая непосредственно связана с глазами наблюдателя. В простейшем случае объектив состоит из одной линзы. Иногда для большего удобства, или, как принято говорить, "эргономичности", объектив может быть снабжен, например, "наглазником" из резины либо мягкого пластика. В стереоскопических (бинокулярных) микроскопах имеется два окуляра.

Объектив является едва ли не самой важной частью микроскопа, обеспечивающая основное увеличение. Основной параметр - апертура. Объективы делятся на "сухие" и "иммерсионные", ахроматические и апохроматические, и даже в дешевых простых микроскопах представляют собой довольно сложную систему линз. Некоторые микроскопы имеют унифицированные элементы крепления объективов, что позволяет комплектовать прибор в соответствии с задачами и бюджетом потребителя.

В качестве осветителя очень часто используется обыкновенное зеркало, позволяющее направлять на исследуемый образец дневной свет. В настоящее время часто применяют специальные галогенные лампы, имеющие спектр, близкий к естественному белому свету и не вызывающие грубых искажений цвета.

Диафрагма. В основном в микроскопах применяют так называемые "ирисовые" диафрагмы, названные так потому, что содержат лепестки, подобные лепесткам цветка ириса. Сдвигая или раздвигая лепестки, можно плавно регулировать силу светового потока, поступающего не исследуемый образец.

Коллектор. С помощью коллектора, расположенного вблизи светового источника, создается световой поток, который заполняет апертуру конденсора.

Конденсор. Данный элемент, представляющий собой собирающую линзу, формирует световой конус, направленный на объект. Интенсивность освещения при этом регулируется диафрагмой. Чаще всего в микроскопах используется стандартный двухлинзовый конденсор Аббе.

Что касается оптической системы в целом, то в зависимости от ее строения принято выделять прямые микроскопы (объективы, насадка, окуляры располагаются над объектом), инвертированные микроскопы (вся оптическая система располагается под объектом), стереоскопические микроскопы (бинокулярные микроскопы, состоящие по сути из двух микроскопов, расположенных под углом друг к другу и формирующие объемное изображение).

Теперь перейдем к механической части микроскопа.

Тубус представляет собой трубку, в которую заключается окуляр. Тубус должен быть достаточно прочным, не должен деформироваться, что ухудшит оптические свойства, потому только в самых дешевых моделях тубус делается из пластмассы, чаще же используются алюминий, нержавеющая сталь либо специальные сплавы. Для ликвидации "бликов" тубус внутри, как правило, покрывается черной светопоглощающей краской.

Основание обычно выполняется достаточно массивным, из металлического литья, для обеспечения устойчивости микроскопа во время работы. На данном основании крепится тубусодержатель, тубус, держатель конденсора, ручки фокусировки, револьверное устройство и насадка с окулярами.

Револьверная головка для быстрой смены объективов. Как правило, в дешевых моделях, имеющих всего один объектив, этот элемент отсутствует. Наличие револьверной головки позволяет оперативно регулировать увеличение, меняя объективы простым ее поворотом.

Предметный столик, на котором размещают исследуемые образцы. Это либо тонкие срезы на предметных стеклах - для микроскопов, работающих в "проходящем свете", либо объемные объекты для микроскопов "отраженного света".

Крепления, которыми предметные стекла фиксируются на предметном столике.

Винт грубой настройки фокусировки. Позволяет, изменяя расстояние от объектива до исследуемого образца, добиваться наиболее четкого изображения.

Винт точной фокусировки. То же самое, только с меньшим шагом и меньшим "ходом" резьбы для максимально точной регулировки.

На рисунке 1 представлена схема расположения основных элементов оптического микроскопа.

Рисунок 1 – Схема расположения основных элементов оптического микроскопа

 

Стоит отметить, что в оптическом микроскопе может быть использован один из двух основных способов освещения: освещение проходящего света и освещение отраженного света. В первом случае световой поток проходит через объект, в результате чего формируется изображение. Во втором - свет отражается от поверхности объекта.

 

Отметим наиболее распространенные режимы работы микроскопов.

Основной режим работы микроскопа – освещение белым светом. В этом режиме производятся первичные осмотры разных объектов и исследование полуфабрикатов и изделий путем анализа яркости или цвета, провзаимодействующего с контролируемым объектом излучения, что обуславливается отличием участков контролируемого объекта, дефектов или фона.

Многие объекты плохо различимы на фоне окружения из-за своих оптических свойств. Поэтому микроскопы оснащаются разнообразными инструментами, облегчающими выделение объекта на фоне среды. Чаще всего это разнообразные режимы освещения объекта:

· в проходящем свете («светлопольная микроскопия»);

· в отраженном или рассеянном объектом свете («темнопольная микроскопия»);

· видимая люминесценция объекта в ультрафиолетовом свете («люминесцентная микроскопия»);

· в поляризованном свете (визуализируется изменение поляризации света при взаимодействии с объектом);

· в цветном («хроматическом») свете.

Также различают режим при котором сдвиг фаз электромагнитной волны трансформируется в контраст интенсивности. Используется для получения изображений прозрачных объектов. Называется такой режим фазово-контрастным.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-10-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: