Влияния геометрических параметров мягкой оболочки на конфигурацию силовых линий напряженности сжатой рабочей среды.




Овалы Кассини и пузыри в моделировании мягких оболочек

Шальнев Олег Васильевич.

1. 4

В работе рассматриваются закономерности изменения конфигурации меридиана мягких оболочек, деформированных внешней нагрузкой в пределах как области бесскладчатости, так и в запредельных областях с помощью модельных поверхностей вращения овалов Кассини.

Мягкие силовые оболочки, способные оказывать сопротивление действию внешней сжимающей нагрузки и совершению работы по перемещению поверхности оболочки, деформированной внешней нагрузкой, относятся к мягким домкратам. Характерной особенностью их является трансформация начальной геометрической формы в процессе перемещения под нагрузкой в диапазоне от складчатого (запредельного) состояния к бесскладчатому.

Наряду с традиционным подходом к расчету мягких силовых оболочек известны модельные описания их формы специфичными кривыми (эластиками Эйлера), очерчивающими меридиан поверхности вращения наибольшего объема при его заданной длине / 5 /, а также с помощью дифференциальных уравнений, определяющих радиусы кривизны безызгибных оболочек вращения под действием равномерного давления / 13 /.

Однако, применение разомкнутых кривых Эйлера для моделирования замкнутых поверхностей вращения приводит к необходимости введения граничных условий, частных расчетных схем, а использование модели, основанной на дифференциальных уравнениях имеет ограничения только действием в области бесскладчатости. Поэтому первым условием создания математической модели является ее замкнутость и непрерывность кривизны. Другим условием создания модели является обобщенность начальной формы мягких оболочек.

При условии абсолютной эластичности материала наиболее рациональной формой является равнонапряженная сфера, или в общем случае овалоид (вытянутый или сплюснутый) равного давления, соотношение размеров которого соответствует условию бесскладчатости. Для запредельного состояния в качестве начальной может быть принята составная (эквипотенциальная) поверхность равного напряжения (пузырьковая модель), представляющая блок равнонапряженных, плотно упакованных упругих сфер / 17 /. Поэтому третьим условием создания модели является возможность приведения изменяемых геометрических форм мягких оболочек к общему уравнению.

Таким условиям моделирования соответствует семейство овалов Кассини. Особенностью этих плоских кривых является их геометрическая аналогия с эквипотенциальными линиями электромагнитного силового поля, образованного двумя точечными зарядами. То есть, кривые Кассини очерчивают меридиан поверхности равного напряжения потенциального поля сил давления сжатой среды, заключенной в деформированную мягкую оболочку.

Овалы Кассини /15/ при определенных значениях констант уравнения являются частным случаем спирических кривых Персея–алгебраических линий четвертого порядка, для которых оси координат служат осями симмерии.

Линиями Кассини называются геометрические места точек (М), для которых произведение расстояний (F1M x F2M = d²), где (F1; F2) – фиксированные фокусы, (d) – постоянная. Уравнение, определяющее форму овала в декартовой системе координат, имеет вид (Рис. 25):

(x² + y²)²– 2f (x² – y²) = d4 – f4, (34)

где f = const – межфокусное расстояние;

0 < d < ¥ - характерная константа овалов Кассини.

В полярных координатах уравнение Кассини имеет вид:

r²= f² cos 2j ± SQR(f4 cos(2j)² + (d4 – f4)). (35)

В зависимости от соотношения параметров (f) и (d) следует рассматривать четыре основные формы овалов, используемых для моделирования геометрической формы мягких оболочек.

При (d > f) – кривые имеют формы замкнутых, симметричных относительно координатных осей линий овалов, стремящихся к окружности, кривизна в точках (G) и (E) положительная. При (d = f SQR(2) – граничный овал с нулевой кривизной, в точках (С1') и (С2') разделяет семейство овалов положительной и отрицательной гаусовой кривизны. При (d = f) – граничный овал в точке (О) неразрывности кривизны формы кривой. При (d < f) овал состоит из двух замкнутых линий, точки (А) и (В) стремятся к точкам фокуса.

Отсюда, при различных значениях геометрического параметра (d) можно получать различные по форме кривые, вращение которых вокруг осей симметрии приведут к поверхностям вращения, традиционным для дифференциальной геометрии (сфере, овалоидам, цилиндру, конусу, тороидам). (См. рис.24).Все эти поверхности описываются преобразованным уравнением (34) кривых Кассини в пространстве:

(x² + y² = z²)² – 2f² (x² + y² – z²) – (d4 – f4) = 0. (36)

Следовательно, поверхности вращения плоских кривых Кассини могут представлять геометрическую модель мягких оболочек, а пространственное уравнение (36) является математической моделью мягких оболочек изменяемой формы. Причем, если уравнение (36) моделирует область бесскладчатых поверхностей, то уравнение (35) в полярных координатах – запредельную область деформирования мягких оболочек (Рис.26)

Состояние бесскладчатости напряженной оболочечной конструкции зависит от соотношения размеров ее осей. Рассмотрим их значение в зависимости от параметров (f) и (d).

При условии (d > f) кривые имеют продольную ось (2 а), равную

a = SQR((d ² + f ²), (37)

а наибольший поперечный размер:

при (d > f SQR(2) b = SQR((d²– f²)), (38)

при (f £ d < f SQR(2) b = d² / 2 f. (39)

При (f £ d < f SQR(2)) кривые имеют четыре точки перегиба; при (d < f) кривые распадаются на две отдельные замкнутые ветви с соотношением продольной внешней и внутренней осями соответственно:

a= SQR((d² + f²), (40)

aвн = SQR((f² – d²). (41)

Так как кривые Кассини являются частным случаем спирических кривых, то есть характеризуемых наличием эксцентриситета радиусов кривизны, чистые овалы стремятся к окружности либо при возрастании (d стремится к ∞), либо при (f = 0).

Следует отметить, что одним из условий моделирования напряженных оболочечных конструкций является общность начальной модельной формы оболочки, предложенной авторами в виде равнонапряженной сферы, т. е. приведем овалы Кассини к предельному уравнению окружности.

При этом эксцентриситет кривизны меридиана изменяется в пределах (0 < f <= d), то есть кривизна изменяется в соответствии с уравнением (32) от окружности до двух точек, лежащих на плоскости центрального сечения сферы, а межфокусное расстояние – от нуля до его диаметра.

Продольная ось деформированной сферы равна диаметру центрального сечения и является величиной постоянной. Значение размеров продольной и поперечной осей совпадают с установленными в уравнениях (36) и (40).

Классическим примером двух и трехосной конфигурации формы деформированной мягкой оболочки является наполнение ее воздухом при внешнем воздействии сжимающей нагрузки сыпучей средой или жидкостью.

На рис. 27 представлены формы кранцев, погруженных в воду, в процессе из заполнения водой в свободном плавании и опертых на жесткое основание.

Таким образом, меридианы деформированной сферы по сути являются овалами, описываемыми уравнением (32), а по содержанию – "мягкими" окружностями, отслеживающими поверхность равного напряжения потенциального поля давления, деформированными распределенной сжимающей нагрузкой и напряженные внутренним напором рабочей среды.

 

Рис. 25. Кривые Кассини в прямоугольных координатах.

 

Рис. 26. Кривые Кассини в полярных координатах.

Рис.27. Схема двух и трехосной конфигурации формы деформированных пневматических кранцев: наверху опертых на жесткое основание (двухстороннее сжатие) и внизу погруженных в воду (объемное сжатие)

Влияния геометрических параметров мягкой оболочки на конфигурацию силовых линий напряженности сжатой рабочей среды.

Отмечено, что напряженность деформированного силового поля сжатой рабочей среды (газа) равна векторной сумме напряженностей каждого из взаимодействующих точечных зарядов (частиц), что графически изображается силовыми линиями равного напряжения.

Авторами установлена закономерность построения и конфигурации силовых линий электростатического силового поля, представляющих геометрическое место точек, для которых произведение удаления от этих точек до концов межфокусного расстояния равно квадрату данного отрезка, аналогичных семейству овалов Кассини (Рис.23,а) / 2 /.

Для плоских задач декартовой системы координат овалы Кассини представлены уравнением четвертого порядка с постоянной величиной межфокусного расстояния (f = const) и переменным соотношением размеров полуосей симметрии:

(x2 + z2)² - 2f² (x² - z²) - (d4 - f4) = 0 (30)

где d – расстояние от точки на овале до фокуса, см;

f – межфокусное расстояние, см.

При (0 ≤ d ≤ ∞) конфигурация овалов принимает форму от двух точек на концах межфокусного расстояния, до окружности. Преобразованное из плоского в пространственное уравнение (30) принимает вид:

(x² + y² +z²)² - 2f² (x² +y² - z²) – (d4 – f4) = 0. (31)

Установлено, что уравнение (31) может быть преобразовано в так называемое уравнение деформированной сферы, если принять условие переменности межфокусного расстояния в зависимости от соотношения размеров овалов(0 = f £ 2a, 2a = const) (Рис.23,б). Это соответствует условию получения сжатого эллипсоида вращения, как поверхности, образованной равномерным сжатием сферы к ее экватору. Следует отметить, что в зависимости от соотношения констант уравнение (31) принимает вид одной из дифференцируемых поверхностей вращения второго и четвертого порядка (сферы, овалоида, цилиндра, конуса-капли, тороидов) (Рис. 24).

Так, например, одним из предельных состояний нагружения мягкой силовой оболочки (мягкого домкрата) является его начальное рабочее положение, когда работа давления практически полностью компенсируется работой воздействующей нагрузки, распределенной по площади центрального сечения (сферы). При этом собственный объем и высота перемещения груза близка к нулю и ими можно пренебречь; распределенная нагрузка от действия массы груза уравновешена давлением среды по плоскости контакта; боковая поверхность вырождается в линию окружности. То есть условием нагружения являются равенства: (f = R; d = 0; h = z = 0; x = y). После подстановки в уравнение (31) последнее принимает вид поверхности плоского круга:

x² + y² = R².

(32)

 

Другим предельным состоянием нагружения мягких домкратов является режим, при котором оболочка напряжена только избыточным давлением рабочего уровня без воздействия массы груза, при этом (f стремится к 0). Конечное уравнение при этом принимает вид канонического уравнения сферы:

(x² + y² + z²) = d² отсюда x² + y² + z² = d². (33)

Таким образом, при определенных условиях нагружения можно получить любую из поверхностей вращения меридиана деформированной сферы и соответствующее им уравнение поверхностей.

В результате проведенных исследований сделаны следующие выводы: проектирование мягких оболочек должно базироваться на четырех основных научных положениях, приведенных в настоящей работе; существует возможность моделирования механизма формообразования мягких оболочек, в том числе в условиях геометрической изменяемости. Установлено, что пузырьковая модель отражает геометрическую, а силовые линии напряженности (овалы Кассини) – физическую модель формообразования мягкой оболочки.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: