Биологические катализаторы.




Классификация углеводов

Углеводы по своей химической структуре можно разделить на простые (моно- и дисахариды) и сложные (полисахариды). Простые углеводы состоят из замкнутых в кольцо молекул с пятью (пентозы) или шестью (гексозы) атомами углерода. На каждый из атомов углерода в такой молекуле приходится два атома водорода и один атом кислорода. Отсюда и происходит их общее название (уголь + вода). Конечным продуктом обмена углеводов является вода и углекислый газ. Моносахариды различаются по своим свойствам (и названиям) в зависимости от того, сколько атомов углерода входит в молекулу, каким образом она свернута в кольцо, и от того, как при этом изгибаются углы получившегося пяти- или шестиугольника.
При соединении двух молекул моносахаридов образуются дисахариды; полисахариды состоят из прямых или разветвленных цепочек молекул моносахаридов различной длины. В молекуле животных углеводов гликогене может быть до 1 миллиона моносахаридов.

Эксперты Всемирной организации здравоохранения (ВОЗ, 2002) предложили упрощенную классификацию углеводов:

Таблица 1 Классификация углеводов

Классификационные группы Углеводы
Сахара (1-2 мономера): моносахариды дисахариды глюкоза, фруктоза, галактоза сахароза, лактоза
Олигосахариды (3–9 мономеров) мальтодекстрины
Полисахариды (более 9 мономеров) крахмал некрахмальные полисахариды амилоза, амилопектин целлюлоза, пектин

 

Моносахариды

Глюкоза – наиболее важный из всех моносахаридов, так как она является структурной единицей (кирпичиком) для построения большинства пищевых ди- и полисахаридов. С пищей к нам поступают моно–, ди– и полисахариды. Всасываются в кишечнике моносахариды. Полисахариды в процессе движения по ЖКТ расщепляются на отдельные молекулы моносахаридов и всасываются в кровь в тонком кишечнике. С кровью воротной вены большая часть глюкозы (около половины) из кишечника поступает в печень, остальная глюкоза через общий кровоток транспортируется в другие ткани. Концентрация глюкозы в крови в норме поддерживается на постоянном уровне и составляет 3,33–5,55 мкмоль/л, что соответствует 75–110 мг в 100 мл крови.
Транспорт глюкозы в клетки регулируется во многих тканях гормоном поджелудочной железы – инсулином. В клетке в ходе многостадийных химических реакций (Цикл Кребса) глюкоза превращаются в другие вещества, которые в конечном итоге окисляются до углекислого газа и воды, при этом выделяется энергия, используемая организмом для обеспечения жизнедеятельности. При снижении уровня глюкозы в крови или ее высокой концентрации и невозможности использования, как это происходит при диабете, наступает сонливость, может наступить потеря сознания (гипогликемическая кома).

Без присутствия инсулина глюкоза не поступит в клетку и не будет использована в качестве топлива. В этом случае в качестве топлива обычно используются жиры. Это характерно для людей с сахарным диабетом. Кстати, в некоторых теориях снижения веса активно используется этот факт. Хотя при этом могут возникать очень серьезные проблемы со здоровьем. Позже мы коснемся этой темы более основательно. Скорость поступления глюкозы в ткани мозга и печени не зависит от инсулина и определяется только концентрацией ее в крови. Эти ткани называются инсулинонезависимыми.

Фруктоза является одним из самых распространенных углеводов фруктов. В отличие от глюкозы она может без участия инсулина проникать из крови в клетки тканей. По этой причине фруктоза рекомендуется в качестве наиболее безопасного источника углеводов для больных диабетом. Часть фруктозы попадает в клетки печени, которые превращают ее в более универсальное "топливо" – глюкозу, поэтому фруктоза тоже способна повышать уровень сахара в крови, хотя и в значительно меньшей степени, чем другие простые сахара. Фруктоза легче, чем глюкоза, способна превращаться в жиры. Основным преимуществом фруктозы является то, что она в 2,5 раза слаще глюкозы и в 1,7 – сахарозы. Ее применение вместо сахара позволяет снизить общее потребление углеводов.

Галактоза в продуктах в свободном виде не встречается. Она образует дисахарид с глюкозой – лактозу (молочный сахар) – основной углевод молока и молочных продуктов.

Лактоза расщепляется в желудочно-кишечном тракте до глюкозы и галактозы под действием фермента лактазы. Дефицит этого фермента у некоторых людей приводит к непереносимости молока. Дефицит этого фермента наблюдается примерно у 40% взрослого населения. Нерасщепленная лактоза служит хорошим питательным веществом для кишечной микрофлоры. При этом возможно обильное газообразование, живот "пучит". В кисломолочных продуктах большая часть лактозы сброжена до молочной кислоты, поэтому люди с лактазной недостаточностью могут переносить кисломолочные продукты без неприятных последствий. Кроме того, молочнокислые бактерии в кисломолочных продуктах подавляют деятельность кишечной микрофлоры и снижают неблагоприятные действия лактозы.

Дисахарид, образованный молекулами глюкозы и фруктозы, – это сахароза. Содержание сахарозы в сахаре песке составляет 99,7%, а в сахаре рафинаде – 99,9%. Сахар быстро расщепляется в желудочно–кишечном тракте, глюкоза и фруктоза всасываются в кровь и служат источником энергии и наиболее важным предшественником гликогена и жиров. Его часто называют "носителем пустых калорий", так как сахар – это чистый углевод, он не содержит других питательных веществ, таких как, например, витамины, минеральные соли.

При соединении двух молекул глюкозы образуется мальтоза – солодовый сахар. Ее содержат мед, солод, пиво, патока и хлебобулочные и кондитерские изделия, изготовленные с добавлением патоки.

В пище человека присутствуют, кроме дисахаридов, три– и тетрасахариды. Чаще всего в пище встречаются трисахарид рафиноза (глюкоза + фруктоза + галактоза) и тетрасахарид стахиоза (глюкоза + фруктоза + 2 молекулы галактозы). Рафиноза и стахиоза в значительных количествах содержатся в бобовых и черном хлебе. У некоторых людей наблюдается непереносимость этих продуктов из–за отсутствия или низкого содержания ферментов, необходимых для расщепления рафинозы и стахиозы. В этих случаях, как и при непереносимости молока, может развиваться обильное газообразование, боли в области живота и даже понос[5],(стр46).

Полисахариды

Все полисахариды, представленные в пище человека, за редкими исключениями, являются полимерами глюкозы. Основным средством депонирования (накопления) углеводов в растениях является полисахарид – крахмал. У животных в этом качестве выступает гликоген.
Крахмал – основной из перевариваемых полисахаридов. На его долю приходится до 80% потребляемых с пищей углеводов.
Источником крахмала служат растительные продукты, в основном злаковые: крупы, мука, хлеб, а также картофель. Содержание его в плодах и овощах колеблется от 1 до 25%. Наиболее богаты крахмалом картофель (12 – 25%), незрелые бананы (до 18%), орехи (10 – 24%), зеленый горошек (5%). Во всех других плодах и овощах крахмал практически отсутствует. Лишь в незрелых плодах его содержание значительно. Так, в яблоках зимних сортов в момент съема находится до 2% крахмала. Но уже после двухмесячного хранения его содержание снижается до 0,5%, а в дальнейшем он практически совсем исчезает.[6],(стр78)

Клетчатка – это основное вещество клеточных оболочек растительных продуктов. Она содержится в кожице плодов, семенных гнездах семечковых плодов и в стенках клеток. В одних овощах клетчатка содержится в виде колец (свекла), в других - в сердцевине (морковь).

В плодах и овощах клетчатка (целлюлоза) и полуклетчатка (гемицеллюлоза) содержатся в количестве около 2% сырой массы. Хотя в пищевом отношении такие вещества считаются балластными, тем не менее им принадлежит важная роль, поскольку они способствуют продвижению пищевых масс по кишечнику. Вместе с тем как высшие, так и низшие растения обладают ферментами, способными расщеплять клетчатку и полуклетчатку до сахаров. В связи с этим одна из причин увеличения содержания сахаров в овощах при хранении может быть связана с расщеплением клетчатки и полуклетчатки.

Основное отличие полисахаридов состоит с том, что при переваривании крахмала в желудочно–кишечном тракте происходит ферментативное расщепление и образование моносахаридов, главным из которых является глюкоза. Расщепление крахмала начинается в полости рта при участии слюны, которая частично расщепляет молекулярные связи, образуя менее крупные, чем крахмал молекулы – декстрины. А затем процесс переваривания происходит постепенно на протяжении всего ЖКТ.
Молекула гликогена содержит до 1 млн. остатков глюкозы, следовательно, на синтез расходуется значительное количество энергии. Необходимость превращения глюкозы в гликоген связана с тем, что накопление значительного количества глюкозы в клетке привело бы к повышению осмотического давления, так как глюкоза хорошо растворимое вещество. Напротив, гликоген содержится в клетке в виде гранул, и мало растворим. Распад гликогена – гликогенолиз – происходит в период между приемами пищи. Гликоген – удобная форма накопления углеводов, имеющая активно разветвленную структуру, что позволяет быстро и эффективно расщеплять гликоген на глюкозу и оперативно использовать как источник энергии.

Гликоген – главная форма запаса углеводов у животных. Гликоген запасается, главным образом, в печени (до 6% от массы печени) и в мышцах, где его содержание редко превышает 1%. Запасы углеводов в организме нормального взрослого человека (массой 70 кг) после приема пищи составляют около 327 г: гликоген печени 4,0% = 72 г (масса печени 1800 г);
мышечный гликоген 0,7% = 245 г (масса мышц 35 кг);
внеклеточная глюкоза 0,1% = 10 г (общий объем внеклеточной жидкости 10 л).

Функция мышечного гликогена состоит в том, что он является легкодоступным источником глюкозы, используемой в энергетических процессах в самой мышце. Гликоген печени используется для поддержания физиологических концентраций глюкозы в крови, прежде всего в промежутках между приемами пищи. Через 12–18 ч после приема пищи запас гликогена в печени почти полностью истощается. Содержание мышечного гликогена заметно снижается только после продолжительной и напряженной физической работы.

Пищевые волокна – это комплекс углеводов: клетчатки (целлюлозы), гемицеллюлозы (полуклетчатки), пектинов, камедей (гумми), слизи, а также не являющегося углеводом лигнина. Таким образом, пищевые волокна – это большая группа веществ различной химической природы, источником которых служат растительные продукты. Некоторые авторы причисляют к пищевым волокнам аминосахара грибов и ракообразных, например хитин и хитозан. Пектины - это группа высокомолекулярных соединений, построенных по типу полисахаридов, в основном содержащихся в плодах и овощах. Незрелые плоды и ягоды содержат протопектин, но в процессе их созревания под воздействием фермента протопектиназы и органических кислот протопектин постепенно превращается в пектин, который придает мягкость созревшим ягодам. И хотя в пищеварительном тракте пектины почти не перевариваются, они благоприятно влияют на жизнедеятельность полезных микроорганизмов, обитающих в кишечнике, и в то же время способствуют удалению вредных бактерий.

Пищевые волокна хоть и называются балластными веществами, но играют очень важную роль в организме человека[7],(стр 27).

Из вышеперечисленного можно подчеркнуть то, что основные питательные вещества в овощах и плодах представлены углеводами. Их содержание зависит от вида и сорта растений, почвы, климата и других особенностей.

Из моносахаридов для организма человека важнейшую роль играет глюкоза. Полисахариды важны тем, что при их расщеплении (крахмал) образуются моносахариды, главным из которых является глюкоза, а клетчатка, полуклетчатка и пищевые волокна помогают при пищеварении и продвижении пищевых масс по кишечнику.

Содержание углеводов в свежих и переработанных плодоовощных товарах

Из углеводов плодов и овощей особое значение имеют сахара, крахмал, клетчатка, гемицеллюлозы и пектиновые вещества.

Основными углеводами плодов и овощей являются: из моносахаридов – глюкоза, фруктоза, арабиноза, ксилоза; из полисахаридов первого порядка (олигосахариды) – сахароза, трегалоза (в грибах); из полисахаридов второго порядка (полиозы), молекулы которых построены из большого числа остатков молекул моносахаридов, - крахмал, целлюлоза, гемицеллюлозы, инулин. По составу близки к углеводам пектиновые вещества, находящиеся во всех плодах и овощах.

Отдельные виды плодов и овощей заметно различаются по содержанию и составу углеводов. Очень велики различия между сортами в пределах одного и того же вида. Нередко сортовые различия превышают даже видовые. Например, среднее содержание сахаров в отдельных сортах лука колеблется от 7,4 до 16,0 %.

Сахара представлены в основном глюкозой, фруктозой и сахарозой. Содержание сахаров в отдельных видах овощей и плодов колеблется в значительных пределах. Так, в огурцах их находится в среднем 2,5 %, в томатах – 3,5%, в луке – 5 – 14%, в вишнях 7 – 14%, в винограде – 14 – 25%.

Различные виды плодов и овощей отличаются и составом углеводов. В семечковых (яблоки, груши, айва и др.) преобладает фруктоза, меньше содержание глюкозы и еще меньше – сахарозы; в абрикосах и сливах основными сахарами являются глюкоза и сахароза, а ягоды характеризуются одинаковым содержанием глюкозы и фруктозы и малым содержанием сахарозы. Глюкоза преобладает в моркови, дынях, фруктоза – в арбузах[8],(стр 76).

Липиды

Липиды — это жироподобные органические соединения, нерастворимые в воде, но хорошо растворимые в неполярных растворителях (эфире, бензине, бензоле, хлороформе и др.). Липиды принадлежат к простейшим биологическим молекулам.

В химическом отношении большинство липидов представляет собой сложные эфиры высших карбоновых кислот и ряда спиртов. Наиболее известны среди них жиры. Каждая молекула жира образована молекулой трехатомного спирта глицерола и присоединенными к ней эфирными связями трех молекул высших карбоновых кислот. Согласно принятой номенклатуре, жиры называют триацилглщеролами.[1],(стр56).

Атомы углерода в молекулах высших карбоновых кислот могут быть соединены друг с другом как простыми, так и двойными связями. Из предельных (насыщенных) высших карбоновых кислот наиболее часто в состав жиров входят пальмитиновая, стеариновая, арахиновая; из непредельных (ненасыщенных) — олеиновая и линолевая.

Степень ненасыщенности и длина цепей высших карбоновых кислот (т. е. число атомов углерода) определяют физические свойства того или иного жира.

Жиры с короткими и непредельными кислотными цепями имеют низкую температуру плавления. При комнатной температуре это жидкости (масла) либо мазеподобные вещества (жиры). И наоборот, жиры с длинными и насыщенными цепями высших карбоновых кислот при комнатной температуре становятся твердыми. Вот почему при гидрировании (насыщении кислотных цепей атомами водорода по двойным связям) жидкое арахисовое масло, например, становится мазеобразным, а подсолнечное масло превращается в твердый маргарин. По сравнению с обитателями южных широт в организме животных, обитающих в холодном климате (например, у рыб арктических морей), обычно содержится больше ненасыщенных триацилглицеролов. По этой причине тело их остается гибким и при низких температурах.

В фосфолипидах одна из крайних цепей высших карбоновых кислот триацилглицерола замещена на группу, содержащую фосфат. Фосфолипиды имеют полярные головки и неполярные хвосты. Группы, образующие полярную головку, гидрофильны, а неполярные хвостовые группы гидрофобны. Двойственная природа этих липидов обусловливает их ключевую роль в организации биологических мембран.

Еще одну группу липидов составляют стероиды (стеролы). Эти вещества построены на основе спирта холестерола. Стеролы плохо растворимы в воде и не содержат высших карбоновых кислот. К ним относятся желчные кислоты, холестерол, половые гар-моны, витамин D и др.[2],(стр 45).

К липидам также относятся терпены (ростовые вещества растений — гиббереллины; каротиноиды — фотосинтетичские пигменты; эфирные масла растений, а также воска).

Липиды могут образовывать комплексы с другими биологическими молекулами — белками и сахарами.[4],(стр 129).

Функции липидов следующие:

Структурная. Фосфолипиды вместе с белками образуют биологические мембраны. В состав мембран входят также стеролы.

Энергетическая. При окислении жиров высвобождается большое количество энергии, которая идет на образование АТФ. В форме липидов хранится значительная часть энергетических запасов организма, которые расходуются при недостатке питательных веществ. Животные, впадающие в спячку, и растения накапливают жиры и масла и расходуют их на поддержание процессов жизнедеятельности. Высокое содержание липидов в семенах растений обеспечивает развитие зародыша и проростка до их перехода к самостоятельному питанию. Семена многих растений (кокосовой пальмы, клещевины, подсолнечника, сои, рапса и др.) служат сырьем для получения растительного масла промышленным способом.

Защитная и теплоизоляционная. Накапливаясь в подкожной клетчатке и вокруг некоторых органов (почек, кишечника), жировой слой защищает организм животных и его отдельные органы от механических повреждений. Кроме того, благодаря низкой теплопроводности слой подкожного жира помогает сохранить тепло, что позволяет, например, многим животным обитать в условиях холодного климата. У китов, кроме того, он играет еще и другую роль — способствует плавучести.

Смазывающая и водоотталкивающая. Воск покрывает кожу, шерсть, перья, делает их более эластичными и предохраняет от влаги. Восковой налет имеют листья и плоды многих растений.

Регуляторная. Многие гормоны являются производными хо-лестерола, например половые (тестостерон у мужчин и прогестерон у женщин) и кортикостероиды (альдостерон). Производные холестерола, витамин D играют ключевую роль в обмене кальция и фосфора. Желчные кислоты участвуют в процессах пищеварения (эмульгирование жиров) и всасывания высших карбоновых кислот.

Липиды являются также источником образования метаболической воды. Окисление 100 г жира дает примерно 105 г воды. Эта вода очень важна для некоторых обитателей пустынь, в частности для верблюдов, способных обходиться без воды в течение 10—12 суток: жир, запасенный в горбе, используется именно в этих целях. Необходимую для жизнедеятельности воду медведи, сурки и другие животные, впадающие в спячку, получают в результате окисления жира.

В миелиновых оболочках аксонов нервных клеток липиды являются изоляторами при проведении нервных импульсов.[5],(стр 63).

БЕЛКИ

Функции белков в организме разнообразны. Они в значительной мере обусловлены сложностью и разнообразием форм и состава самих белков.

Белки - незаменимый строительный материал. Одной из важнейших функций белковых молекул является пластическая. Все клеточные мембраны содержат белок, роль которого здесь разнообразна. Количество белка в мембранах составляет более половины массы.

Многие белки обладают сократительной функцией. Это прежде всего белки актин и миозин, входящие в мышечные волокна высших организмов. Мышечные волокна - миофибриллы - представляют собой длинные тонкие нити, состоящие из параллельных более тонких мышечных нитей, окруженных внутриклеточной жидкостью. В ней растворены аденозинтрифосфорная кислота (АТФ), необходимая для осуществления сокращения, гликоген - питательное вещество, неорганические соли и многие другие вещества, в частности кальций.[8],(стр 29).

Велика роль белков в транспорте веществ в организме. Имея различные функциональные группы и сложное строение макромолекулы, белки связывают и переносят с током крови многие соединения. Это прежде всего гемоглобин, переносящий кислород из легких к клеткам. В мышцах эту функцию берет на себя еще один транспортный белок - миоглобин.

Еще одна функция белка - запасная. К запасным белкам относят ферритин - железо, овальбумин - белок яйца, казеин - белок молока, зеин - белок семян кукурузы.

Регуляторную функцию выполняют белки-гормоны.

Гормоны - биологически активные вещества, которые оказывают влияние на обмен веществ. Многие гормоны являются белками, полипептидами или отдельными аминокислотами. Одним из наиболее известных белков-гормонов является инсулин. Этот простой белок состоит только из аминокислот. Функциональная роль инсулина многопланова. Он снижает содержание сахара в крови, способствует синтезу гликогена в печени и мышцах, увеличивает образование жиров из углеводов, влияет на обмен фосфора, обогащает клетки калием. Регуляторной функцией обладают белковые гормоны гипофиза - железы внутренней секреции, связанной с одним из отделов головного мозга. Он выделяет гормон роста, при отсутствии которого развивается карликовость. Этот гормон представляет собой белок с молекулярной массой от 27000 до 46000.

Одним из важных и интересных в химическом отношении гормонов является вазопрессин. Он подавляет мочеобразование и повышает кровяное давление. Вазопрессин - это октапептид циклического строения с боковой цепью:Регуляторную функцию выполняют и белки, содержащиеся в щитовидной железе - тиреоглобулины, молекулярная масса которых около 600000. Эти белки содержат в своем составе йод. При недоразвитии железы нарушается обмен веществ.

Другая функция белков - защитная. На ее основе создана отрасль науки, названная иммунологией.

В последнее время в отдельную группу выделены белки с рецепторной функцией. Есть рецепторы звуковые, вкусовые, световые и др. рецепторы.[4],(стр 46).

Следует упомянуть и о существовании белковых веществ, тормозящих действие ферментов. Такие белки обладают ингибиторными функциями. При взаимодействии с этими белками фермент образует комплекс и теряет свою активность полностью или частично. Многие белки - ингибиторы ферментов - выделены в чистом виде и хорошо изучены. Их молекулярные массы колеблются в широких пределах; часто они относятся к сложным белкам - гликопротеидам, вторым компонентом которых является углевод.

Если белки классифицировать только по их функциям, то такую систематизацию нельзя было бы считать завершенной, так как новые исследования дают много фактов, позволяющих выделять новые группы белков с новыми функциями. Среди них уникальные вещества - нейропептиды (ответственные за важнейшие жизненные процессы: сна, памяти, боли, чувства страха, тревоги).[6],(стр 81).

Биологические катализаторы.

В основе всех жизненных процессов лежат тысячи химических реакций. Они идут в организме без применения высокой температуры и давления, т. е. в мягких условиях. Вещества, которые окисляются в клетках человека и животных, сгорают быстро и эффективно, обогащая организм энергией и строительным материалом. Но те же вещества могут годами храниться как в консервированном (изолированном от воздуха) виде, так и на воздухе в присутствие кислорода. Возможность быстрого переваривания продуктов в живом организме осуществляется благодаря присутствию в клетках особых биологических катализаторов - ферментов.

Ферменты - это специфические белки, входящие в состав всех клеток и тканей живых организмов играющие роль биологических катализаторов. О ферментах люди узнали давно. Еще в начале прошлого века в Петербурге К.С.Кирхгоф выяснил, что проросший ячмень способен превращать полисахарид крахмал в дисахарид мальтозу, а экстракт дрожжей расщеплял свекловичный сахар на моносахариды - глюкозу и фруктозу. Это были первые исследования в ферментологии. Хотя на практике применение ферментативных процессов было известно с незапамятных времен (сбраживание винограда, сыроварение и др.).

В разных изданиях применяются два понятия: "ферменты" и "энзимы". Эти названия идентичны. Они обозначают одно и тоже - биологические катализаторы. Первое слово переводится как "закваска", второе - "в дрожжах".[3],(стр 72).

Долгое время не представляли, что же происходит в дрожжах, какая сила, присутствующая в них, заставляет вещества разрушаться и превращаться в более простые. Только после изобретения микроскопа было установлено, что дрожжи - это скопление большого количества микроорганизмов, которые используют сахар в качестве своего основного питательного вещества. Иными словами, каждая дрожжевая клетка "начинена" ферментами способными разлагать сахар. Но в то же время были известны и другие биологические катализаторы, не заключенные в живую клетку, а свободно "обитающие" вне ее. Например, они были найдены в составе желудочных соков, клеточных экстрактов. В связи с этим в прошлом различали два типа катализаторов: считалось, что собственно ферменты неотделимы от клетки и вне ее не могут функционировать, т.е. они "организованы". А "неорганизованные" катализаторы, которые могут работать вне клетки, называли энзимами. Такое противопоставление "живых" ферментов и "неживых" энзимов объяснялось влиянием виталистов, борьбой идеализма и материализма в естествознании. Точки зрения ученых разделились. Основоположник микробиологии Л. Пастер утверждал, что деятельность ферментов определяется жизнью клетки. Если клетку разрушить, то прекратиться и действие фермента. Химики во главе с Ю. Либихом развивали чисто химическую теорию брожения, доказывая, что активность ферментов не зависит от существования клетки.[5],(стр 72).

АТФ.Энергия Мышц

Молекула АТФ(аденозин трифосфат) является универсальным источником энергии, обеспечивая не только работу мышц, но и протекание многих других биологических процессов, включая и рост мышечной массы (анаболизм). [3],(стр 47).

Молекула АТФ состоит из аденина, рибозы и трех фосфатов. Энергия высвобождается при отделении от молекулы одного из трех фосфатов и превращением АТФ в АДФ (аденозин дифосфат). При необходимости может отделяться еще один фосфорный остаток с получением АМФ (аденозин монофосфат) и повторным выбросом энергии.

 

Наиболее важным качеством является то, что АДФ может быстро восстанавливаться до полностью заряженной АТФ, что объясняется невысокой стабильностью связей - например, жизнь молекулы АТФ составляет в среднем менее одной минуты, а за сутки с этой молекулой может происходить до 3000 циклов перезарядок.

 

Выделяемая АТФ энергия имеет большую величину, потому относится к макроэгическим соединениям. Естественно, при восстановлении ее организм вынужден будет затратить такое же количество энергии.

Общий объем АТФ стабилен и обычно не превышает 0.5 % от массы мышц. Сам по себе объем увеличить не удастся, но можно улучшить скорость восстановления молекулы, что напрямую скажется на выносливости и силе спортсмена.

Восстановление АТФ происходит несколькими способами – вначале физической активности для перезарядки расходуется большое количество ресурсов, но и скорость восстановления АТФ очень высока, за тем организм переходит на все более экономичные способы ресинтеза, в конечном итоге мышечная система имеет возможность функционировать длительное время при умеренном синтезе АТФ.

 

Синтез АТФ

Прежде всего следует сказать, что качественный и быстрый синтез АТФ возможен только при поддержании высокого уровня тестостерона, поскольку мужские гормоны являются главными стимуляторами биологических процессов направленных на повышение силы и выносливости.Подробности о синтезе,
В первые 10 секунд физической нагрузки синтез АТФ происходит быстро и легко при использовании креатин фосфата, запасы которого в мышцах можно увеличить до определенной величины. Хорошо подготовленный спортсмен может показать до 20 секунд максимальной производительности (тяжелая атлетика, бег на короткие дистанции).

Когда запасы фосфата креатина падают, включается так называемая АНАЭРОБНАЯ выносливость. Для синтеза АТФ используется много энергии, которую организм получает из запасов гликогена, восстановление АТФ происходит медленнее, но процесс активно продолжается более 2 минут.Положительная сторона – не требуется участия кислорода,отрицательная сторона – вырабатывается много молочной кислоты.
Анаэробный метаболизм – основа силовой выносливости.

Когда заметно истощаются запасы гликогена усиливается Аэробный метаболизм, который обеспечивает медленное, но достаточно длительное производство АТФ при очень экономном расходе глюкозы.Этот процесс полностью запускается уже через три минуты интенсивной нагрузки. Обеспечение энергией в этом случае требует участия кислорода. Для производства АТФ используются сначала углеводы, за тем жиры. Жиры могут применяться и ранее вместе с углеводами - в стрессовых состояниях. Когда естественные запасы энергии подходят к концу организм берет в оборот и белки мышц (в первую очередь те, что возможно быстро восстановить).
Наибольший выход молекул АТФ происходит при расщеплении жирных кислот

Организм обычно бережно расходует АТФ, потому спортсмен не может потратить весь запас энергии в одном интенсивном подходе. Если тело получит небольшой перерыв, запасы АТФ частично восстановятся и можно будет снова расходовать энергию, многократно повторяя подходы можно добиться значительной нагрузки на мышцы, но и заметно исчерпать АТФ.[2],(стр 40).

 


 


Литература:

Книга 1.Авторы:К.Вилли,В Детье;“Биология (биологические процессы и законы)’’ Издательство “Мир’’ Москва 1975.

Книга 2.Авторы:М.С Гилляров;”Биологический энциклопедический словарь” Издательство:Москва “Советская энциклопедия “1989г.

Книга 3.Авторы:В.В Маховко,П.В Макаров; Государственное издательство медицинской литературы “Медиз”1956г Москва.

Книга 4. Боген Г. Современная биология. - М.: Мир, 1970.

Книга 5.Гормональная регуляция размножения у млекопитающих. М., 1987

Книга 6.Грин Н., Стаут У., Тейлор Д. Биология: в 3-х т. Т. 3: пер. с англ./под ред. Р.

Книга 7.Мамонтов С.Г. Биология. Общие закономерности. – М.: Дрофа, 2002.

Книга 8.Мэйнард Смит Дж. Эволюция полового размножения. - М., 1981

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-10-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: