Конструкции промышленных завес




Как указывалось выше, воздушные и воздушно-тепловые промышленные завесы по направлению воздушной струи подразделяются на нижние, верхние, боковые односторонние и боковые двусторонние с одинаковыми и разными углами выхода струи. Ниже мы рассмотрим некоторые конструкции воздушно-тепловых завес, разработанных ЦНИИПромзданий. На рис. 4 показана конструкция нижней завесы для автомобильных ворот. Вентиляционный агрегат находится на уровне пола у ворот.

Как правило, у ворот для въезда-выезда транспорта устраивают воздушные завесы шиберующего типа. В этом случае воздушная струя завесы, уменьшая количество проникающего через проем воздуха, частично заграждает проем. В воздушных завесах шиберующего типа воздух рекомендуется выпускать через щелевидные насадки под углом 30° к плоскости проема с направлением наружу.
Чтобы обеспечить устойчивое направление воздушного потока, глубину направляющих щелевидной насадки для выпуска воздуха принимают в 2,5 раза больше ширины щели и скорость движения воздуха в начале раздаточного короба для обеспечения равномерности раздачи – не более 70% скорости выхода воздуха из щели.
Раздаточные короба располагают с внутренней стороны проема на расстоянии не более 0,1(Fпр)1/2 (Fпр – площадь проема, оборудованного завесой) от его плоскости, так чтобы они забирали воздух для завесы на уровне установки агрегата. Забор воздуха из верхней зоны помещения целесообразен, если температура там выше, чем в зоне размещения агрегата, на 5 °С и более.
У автомобильных и железнодорожных ворот рекомендуется устраивать двухсторонние завесы шиберующего типа: они более надежно перекрывают проем при движении или остановке транспорта. Боковые завесы выполняют с различным расположением вентиляционных агрегатов, и располагаются они как на уровне пола, так и на площадках над воротами. Боковые завесы могут быть выполнены с одним вентилятором на оба стояка или с вентилятором на каждом стояке.

На рис. 5 показана боковая воздушно-тепловая завеса для автомобильных ворот с воздушными агрегатами, расположенными над воротами на каждом стояке.
Эта типовая воздушная завеса разработана для раздвижных и распашных ворот размерами 3x3; 4x3; 4x4,2; 4,7х5,6м. Завесы можно монтировать с калориферами, параметры которых рассчитываются, или без них. Компоновка вентиляционных агрегатов позволяет устанавливать воздуховоды для забора воздуха из разных зон помещения.
Над воротами рекомендуется устанавливать воздушные завесы с подачей до 38 тыс. м3/ч. Воздушно-тепловые завесы с верхней подачей воздуха рекомендуется устанавливать в высоких зданиях. Схема такого устройства показана на рис. 6. Воздух в завесу подается с достаточно высокой температурой: +55...+65 °С.

Циркуляционные завесы устраивают с забором воздуха снизу проема. Для очистки воздуха от пыли служат фильтры. Благодаря высокой температуре подаваемого в завесу воздуха можно значительно снизить его расход на завесу.
При этом агрегат для завесы получается сравнительно небольшим и занимает мало места, а направление горячего воздуха сверху вниз, к плоскости земли, препятствует выходу горячего воздуха струи завесы наружу, обеспечивая значительное снижение потерь тепла. При отсосе воздуха снизу или сбоку в нижней части ворот отбирается наиболее холодная и тяжелая часть воздуха, проникающего в ворота.
Одним из основных конструктивных элементов воздушных завес является раздаточный короб с воздуховыпускной щелью. Он должен обеспечивать выход воздуха под заданным углом к плоскости ворот и под прямым углом к оси воздуховода. Чтобы воздух струи завесы меньше смешивался с наружным воздухом, рекомендуется иметь на выходе из щели равномерное поле скоростей.

На входе в щелевидную насадку рекомендуется устанавливать конфузор. Для того чтобы увеличить глубину ограждения стенки, щелевую насадку на большую ее часть утапливают в раздаточный короб. У типовых стояков воздухораздаточных коробов с сечением в основании 470х470; 600х600; 650х650; 800х800 и 950х950 мм ширина щели составляет от 50 до 200 мм, длина – 3 м.
При устройстве воздушных завес для ворот высотой 4,2 и 5,6 м применяют дополнительную насадку длиной 1,2 м. Для выравнивания потока, а также чтобы создать более прочную решетку, щель разгораживают двумя продольными перегородками и поперечные перегородки устанавливают через каждые 40...50 мм.
Воздухораспределительные воздуховоды для нижних завес следует делать как сужающиеся к концу воздуховоды равномерной раздачи. Чтобы обеспечить большую равномерность выхода воздуха по длине воздуховода, площадь сечения в конце воздуховода рекомендуется принимать в два раза больше площади воздуховыпускных щелей. Чем меньше продольная скорость воздуха в воздуховоде, тем более плавным будет его вход в щелевидную насадку и меньше турбулентность струи.
В боковых завесах с движением воздуха в стояках сверху вниз можно изготавливать воздуховоды одинакового сечения по всей длине. В этом случае неравномерность выхода воздуха по длине воздуховода (у низа ворот будет выходить больше воздуха) не является отрицательным фактором, а скорее, положительным, так как здесь имеют место большие скорости прохода воздуха через ворота. Малые продольные скорости в концевом участке воздуховода будут способствовать более плавному входу воздуха в щелевидную насадку.
Для регулирования расхода воздуха, подаваемого вентилятором в завесу, применяют разные способы: упрощенный направляющий аппарат языкового типа, закручивающий аппарат, дроссели, шиберы.


Автоматическое регулирование воздушных завес
При автоматизации завес должны решаться следующие задачи:
пуск и остановка электродвигателя вентилятора воздушной завесы в зависимости от положения ворот;
регулировка объема воздуха, подаваемого в завесу, в зависимости от разности температур внутри и снаружи помещения;
регулировка температуры воздуха, подаваемого в завесу;
пуск и остановка агрегата воздушной завесы в зависимости от температуры воздуха в помещении около ворот. Воздушные завесы начинают эксплуатировать, когда температура наружного воздуха становится ниже +5...+10 °С.
В соответствии с этим регулирование количества воздуха, подаваемого в воздушную завесу, следует осуществлять только в пределах до 38...50% полной производительности. При этом устройство автоматического регулирования значительно упрощается.
Устройство автоматического управления воротами дает возможность до минимума сократить время, в течение которого они остаются открытыми. При устройстве воздушной завесы ее следует оборудовать автоматическим регулированием расхода воздуха.
Нерегулируемая завеса неэффективна: даже кратковременная ее работа может вызвать выброс значительной массы теплого воздуха, переохлаждение помещения и нарушение работы естественной вентиляции (фонарей, дефлекторов, шахт). Из-за повышенного разрежения в складских помещениях эти устройства могут работать «на приток», загрязняя воздух внутри помещения.
Наличие автоматического управления воротами облегчает возможность устройства автоматического регулирования расхода воздуха, подаваемого в завесу, так как многие приборы будут общими для обеих систем автоматики, и, кроме того, позволяет снизить расход тепла и электроэнергии. Эта экономия особенно значительна при устройстве автоматического регулирования у ворот, открываемых на длительное время. Регулировать расход воздуха, подаваемого в завесу, можно по разности давлений внутри и снаружи здания и по разности температур.
Регулирование под непосредственным воздействием разности давлений более полно отражает условия, определяющие работу воздушной завесы. В этом случае будет учтено изменение давления не только из-за изменения разности температур, но также от воздействия ветра и изменения состояния герметичности здания (открытия дверей или окон в нижней или верхней его части).
Однако регулировать степень открытия регулирующего аппарата датчиком, воспринимающим разность давления снаружи и внутри здания, можно только при закрытых воротах, когда завеса не работает. Это объясняется тем, что при открытых воротах и действующей завесе воспринимаемая датчиком разность давлений будет зависеть не только от теплового напора, силы ветра и степени открытия приточных и вытяжных отверстий в складе, но и от действия самой завесы.
В таком случае с увеличением разрежения в помещении регулирующий аппарат может быть приведен в крайнее положение, тогда как при открытых воротах он должен фиксироваться в том положении, в каком был до открытия ворот. Когда ворота открыты и завеса действует, положение регулирующего аппарата должно оставаться неизменным.
Таким образом, если ворота открываются периодически на сравнительно небольшое время, можно ставить датчик разности давлений. В случаях когда ворота во время работы склада открыты длительно или постоянно, использовать датчик разности давлений нельзя и следует применять температурный датчик.
Регулирование по разности температур удовлетворительно обеспечивает соответствие объема подаваемого в завесу воздуха изменяющимся условиям работы завесы. Это объясняется тем, что в зимнее время тепловой напор, возникающий из-за разности температур, является основным фактором, создающим разность давлений вне здания и внутри.
Так как температура воздуха в здании поддерживается в течение отопительного периода примерно одинаковой, регулирование можно вести только по температуре наружного воздуха. Это значительно упрощает устройство автоматики (рис. 7).


Для упрощения рассматривается схема с ручным открытием ворот. Конечный выключатель, установленный у ворот, срабатывает при их открытии, и через магнитный пускатель включается вентилятор воздушной завесы. Одновременно с пуском завесы открывается регулирующий аппарат 6, который до этого был полностью закрыт.
Датчик 1, воспринимающий разность давлений или температур внутри и снаружи помещения, определяет степень открытия регулирующего аппарата. Чем больше эта разность, тем больше открывается регулирующий аппарат. Кроме датчика 1 может быть установлен датчик температуры в помещении склада около ворот. Он включает воздушную завесу и открывает аппарат 6, когда ворота закрыты, но температура воздуха упала ниже допустимой.
В этом случае завеса будет работать как отопительный агрегат. Если исполнительный механизм является пневматическим, то в схему дополнительно надо включить электропневматическое реле. Для подогрева воздуха, подаваемого в завесу, устанавливается калорифер, работа которого должна быть сблокирована с работой вентилятора.
Установка двух вентиляторов на каждый стояк дает дополнительные возможности для регулировки путем последовательного включения вентиляторов. При температуре наружного воздуха +5...+10 °С, когда обычно начинают работать воздушные завесы, следует включать не оба вентилятора сразу, а для начала только один.
С учетом того, что односторонние завесы более эффективны, чем двусторонние, работа одного вентилятора на его расчетную производительность обеспечит требуемые санитарно-гигиенические условия на складе у ворот при разности температур 0,55...0,6 от расчетной разности. Только когда разность температур станет больше, чем 55...60% расчетной, необходимо будет включить второй вентилятор и подавать воздух в оба стояка (рис. 8).

Схема автоматического регулирования воздушных завес с двумя вентиляторами показана на рис. 8. Температурный датчик 1 включает первый вентиляционный агрегат воздушной завесы при температуре наружного воздуха +5...+10 °С, датчик 6 – вторую установку воздушной завесы при более низкой температуре наружного воздуха.
С помощью простейших автоматических устройств можно значительно сократить расходы на эксплуатацию воздушных завес. Благодаря тому, что конечный выключатель соединен с реле 3, в зависимости от температуры наружного воздуха включается один или два вентиляционных агрегата только при открытых воротах.
Дополнительный датчик температур 4 включает один из агрегатов воздушной завесы при температуре в районе ворот ниже установленной при открытии дополнительных вытяжных отверстий, действии ветра и т. п.
Схему автоматики, изображенную на рис. 8, можно упростить, сняв датчики температур 1 и 6 и конечный выключатель, оставив только один датчик 4, который при падении температуры воздуха в районе ворот ниже установленной последовательно включит первый, а при дальнейшем понижении температуры – второй вентиляционный агрегат.
Системы управления воздушно-тепловыми завесами в зависимости от применяемого теплообменника с водяным, паровым или электрическим обогревом имеют свои особенности и разрабатываются для конкретного теплоносителя.

 

 

Требования к проектированию воздушных и воздушно-тепловых завес

Устройство воздушных завес в складских помещениях должно отвечать требованиям СНиП 31-04-2001 «Складские здания» и СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование». Согласно СНиП 41-01-2003 воздушные и воздушно-тепловые завесы в складских помещениях предусматривают в следующих случаях:
у постоянно открытых проемов и наружных стен складов, а также у ворот и проемов в наружных стенах, не имеющих тамбуров и открывающихся более 5 раз или не менее чем на 40 минут за смену в районах с расчетной температурой наружного воздуха –15 °С и ниже;
при возможной остановке транспорта непосредственно в проеме;
в складских помещениях с кондиционированием воздуха у наружных дверей, ворот и технологических проемов.
Тепло, создаваемое воздушными завесами периодического действия, не следует учитывать в воздушном и тепловом балансе складского здания. Температуру воздуха, подаваемого воздушно-тепловыми завесами, следует принимать не выше +50 °С у наружных дверей и не выше +70 °С у наружных ворот и проемов.

Расчетную температуру смеси воздуха, поступающей в складские помещения через наружные двери, ворота и проемы, следует принимать от +5 до +12 °С в зависимости от технологических требований. Воздушные и воздушно-тепловые завесы у наружных проемов, ворот и дверей рассчитывают с учетом ветрового давления. Скорость выпуска воздуха из щелей или отверстий воздушных и воздушно-тепловых завес принимается не более 8 м/с у наружных дверей и 25 м/с – у ворот и технологических проемов.

 

Расчет воздушных и воздушно-тепловых завес:

Наружный воздух попадает в помещение через ворота и другие проемы в стенах здания вследствие разности давлений снаружи и внутри здания. Количество воздуха, подаваемого завесой, должно полностью исключить проникновение холодного наружного воздуха.
Приступая к расчетам и проектированию воздушных завес, прежде всего определяют исходные данные: размер ворот, количество наружного воздуха, которое проходит в помещение через проем без работы завесы, расчетные температуры наружного и внутреннего воздуха. Основными параметрами, определяемыми расчетом, являются производительность завесы по воздуху, угол и скорость подачи воздуха в зависимости от размеров проема, мощность калорифера для подогрева воздуха.
В настоящее время существует несколько методик расчета промышленных воздушных завес.
Ниже приведен приближенный метод. Он является достаточно условным, так как значение дальнобойности струи (расстояние между точками пересечения оси завесы с плоскостью ворот) рассчитывается геометрическим способом, и основан на применении коэффициента дальнобойности, зависящего от угла наклона и коэффициента турбулентности струи завесы и определенного на основе расчета и экспериментальных данных для случая равномерного распределения скоростей горизонтального потока.
Количество воздуха, поступающего в единицу времени, или расход, м3/c, через любой открытый проем,
Lпр = vHВ,
где
v – скорость воздуха, м/с;
Н и B – соответственно высота и ширина проема, м.
Расход воздуха, м3/c, необходимый для создания завесы в проеме, полностью исключающей прорыв холодного наружного воздуха на склад,
Lзав=Lпр/j(B/b+1)
где
j – коэффициент дальнобойности воздушного потока завесы, который можно принять равным 0,45;
b – ширина щели канала, через которую воздух поступает к завесе, м.
Тепловая мощность калорифера, ккал/ч,
Qзав = 0,24Lзав (tз – tнач),
где
tз – температура воздуха струи завесы, °С;
tнач – нормируемая (или наружная) температура в зависимости от места забора воздуха, °С.
Более точная методика расчета воздушных завес основана на применении условного коэффициента расхода воздуха, который определяется как отношение количества воздуха, подаваемого в завесу, к количеству воздуха, проходящего через ворота.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-05-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: