Кислотно-основные свойства комплексных соединений




Комплексные соединения могут проявлять кислотно-основные свойства за счет ионов Н+ и ОН~ внешней сферы:

кислоты: H2[SiF6] à 2Н+ + [SiF6]2-

основания: [Аg(NН3)2]ОН à [Аg(NН3)2]+ + ОН-

и, кроме того, за счет диссоциации их лигандов. Последнее особенно характерно для природных комплексов, содержащих белки, которые, как известно, являются амфолитами. Например, гемоглобин (ННb) или оксигемоглобин (ННbО2) проявляют кислотные свойства за счет кислотных групп белка глобина, являющегося лигандом:

ННb à Н+ + Hb- ННЬО2 ßà Н+ + HbO2

В то же время анион гемоглобина за счет аминогрупп белка глобина проявляет основные свойства и поэтому связывает кислотный оксид С02 с образованием аниона карбаминогемоглобина (НbСО2)-:

СО2 + Hb- à (НbCО2)-

С помощью этого соединения СО2 транспортируется из тканей в легкие, где, вступая в реакцию с более сильной кислотой оксигемоглобином, превращается в слабую нестойкую кислоту ННbСО2, распадающуюся на гемоглобин с выделением СО2.

(НbСО2)- + ННbО2 ßà НbО2- + ННb + СО2

Кислотно-основные свойства лигандов, связанных с комплексообразователем, часто выражены более ярко, чем кислотно-основные свойства свободных лигандов.

 

Аммиакаты – комплексы, в которых лигандами * служат молекулы аммиака, например [Cu(NH3)4]SO4, [Co(NH3)6]Cl3.

Аквакомплексы – лигандами являются молекулы воды: [Co(H2O)6]Cl2, [Al(H2O)6]Cl3.

Ацидокомплексы – лигандами являются анионы. Ацидокомплексы можно представить как продукты сочетания двух солей. Например: PtCl4·2KCl или K2[PtCl6], Fe(CN)2·4KCN или K4[Fe(CN)6] (желтая кровяная соль), Fe(CN)3·3KCN или K3[Fe(CN)6] (красная кровяная соль).

 

Циклические, или хелатные соединения. Они содержат бидентатный лиганд или лиганд с более высокой дентатностью *, который захватывает центральный ион подобно клешням:

Хелатные соединения отличаются особой прочностью.

НОМЕНКЛАТУРА КОМПЛЕКСНЫХ СОЕДИНЕНИЙ

В химии под номенклатурой понимают систему правил составления названий соединений. Правила номенклатуры разрабатываются Международным союзом чистой и прикладной химии (IUPAC).

Согласно номенклатуре комплексных соединений, название комплексного аниона начинают с указания состава внутренней сферы *. Во внутренней сфере прежде всего называют анионы, прибавляя к их названию окончание -о. Например: Cl– (хлоро-), CN– (циано-), OH– (гидроксо-) и т.д. Далее называют нейтральные лиганды *. При этом для аммиака используют название “аммин”, для воды – “аква”. Количество лигандов указывают греческими числительными: 2 – ди, 3 – три, 4 – тетра, 5 – пента, 6 – гекса. Затем называют комплексообразователь *, используя для него латинское название и окончание -ат, после чего римскими цифрами в скобках указывают степень окисления * комплексообразователя. После обозначения состава внутренней сферы называют внешнесферные катионы.

Если комплексообразователь входит в состав катиона, то название внутренней сферы составляют так же, как в случае комплексного аниона, но используют русское название комплексообразователя и в скобках указывают степень его окисления. Примеры:

K[Fe(NH3)2(CN)4] – тетрацианодиамминферрат (III) калия

K4[Fe(CN)6] – гексацианоферрат (II) калия

Na2[PtCl6] – гексахлороплатинат (IV) калия

(NH4)2[Pt(OH)2Cl4] – тетрахлородигидроксоплатинат (IV) аммония

[Pt(NH3)4Cl2]Cl2 – хлорид дихлоротетраамминплатины (IV)

[Ag(NH3)2]Cl – хлорид диамминсеребра (I)

Если комплексное соединение является неэлектролитом, т.е. не содержит ионов во внешней сфере, то степень окисления центрального атома не указывается, т.к. она однозначно определяется из условия электронейтральности комплекса. Например:

[RhI3(NH3)3)] – трииодотриамминродий

[Co(NO2)3(H2O)3] – тринитротриаквакобальт

[Cu(CNS)2(NH3)2] – дироданодиамминмедь.

 

Согласно методу валентных связей *, образование комплексных соединений * осуществляется за счет донорно-акцепторного * взаимодействия между комплексообразователем * и лигандами *. Обычно центральный атом имеет свободные орбитали *, а лиганды имеют неподеленные электронные пары. В образовании такой координационной связи могут участвовать ns-, np-, nd- или (n–1)d- орбитали, где n – номер внешнего электронного слоя комплексообразователя. Координационное число * определяется гибридизацией * орбиталей центрального атома:

Для примера рассмотрим образование координационных связей в ионе [Zn(NH3)4]2+. Здесь акцептором является ион Zn2+, имеющий вакантные орбитали на четвертом электронном слое и полностью занятый третий электронный слой. Четыре ковалентных связи * образуются с участием одной 4s- и трех 4p-орбиталей, которые перекрываются с орбиталями молекул аммиака (донор), содержащими неподеленные электронные пары:

Валентные орбитали цинка подвергаются sp3-гибридизации, поэтому лиганды (NH3) расположены в вершинах тетраэдра, в центре которого находится ион Zn2+.

Донорно-акцепторная связь в комплексных соединениях является весьма прочной, однако наряду с диссоциацией, в которой отщепляются ионы внешней сферы, в очень незначительной степени разрушается также внутренняя сфера комплекса *:

[Ag(NH3)2]Cl → [Ag(NH3)2]+ + Cl– (первичная диссоциация)

[Ag(NH3)2]+ Ag+ + 2 NH3 (вторичная диссоциация)

Вторичная диссоциация подчиняется закону действия масс * и характеризуется соответствующей константой равновесия *, которая называется константой нестойкости комплексного иона:

Наиболее устойчивые комплексные соединения имеют наименьшие константы нестойкости. С помощью этих величин можно предсказать течение реакций между комплексными соединениями. Реакция протекает в сторону продуктов с меньшими константами нестойкости. Например, для иона [Ag(NH3)2]+ Kнест=6,8·10–8, а для иона аммония NH4+ Kнест=5,4·10–10, поэтому под действием кислот аммиакат серебра разрушается с образованием ионов Ag+ и NH4+:

[Ag(NH3)2]+ + 2 H+Ag+ + 2 NH4+

Для комплекса [Pt(NH3)4]2+ Kнест=5·10–34, поэтому он не разрушается даже в концентрированной соляной кислоте.

Иногда вместо константы нестойкости используют обратную ей величину, называемую константой устойчивости: Kуст=1/Kнест. Значения этих констант можно найти в справочнике.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: