Роль химии в сохранении окружающей среды, химическая сущность процессов жизнедеятельности.
Содержание
- Введение
- Химические системы
- От обнаружения к защите
- Защита от климатических катастроф: парниковый эффект
- Оценка риска
- Заключение
- Использованная литература
- Введение
Ежегодно, люди вываливают миллионы тонн пластиков в окружающую среду, значительная часть этих отходов низвергается прямо в океан. Действительно, более 9 млн. тонн твердых отходов промышленности ежегодно уходит непосредственно в море. Одни только коммерческие суда выбрасывают за борт 6,6млн. тонн мусора в год. Этим мусором можно было бы завалить 440000 классных комнат.
Вопреки общему мнению пластиковые отходы, в конце концов, разрушаются, но происходит это медленно - иногда для этого требуется до 50 лет. За такое время может скопиться масса мусора. Особенно чувствительны к пластиковому мусору морские экосистемы: он не тонет, и обитатели морей по ошибке принимают его за медуз, яйца и другие лакомства или запутываются в нем, ведь 150000т. отходов - это выбрасываемые в океан рыболовные снасти. Дело принимает особенно неприятный оборот в арктических районах, где мусор только накапливается, но не разрушается - этому препятствует очень низкая температура.
Химики сделали значительный шаг в решении этой серьезной проблемы. Выход из бедственного положения был найден в создании пластиков с особой структурой. Пластики - это полимерные материалы, получаемые из продуктов переработки нефти. Они состоят из длинных цепей, построенных из повторяющихся молекулярных группировок. Химики нашли способ изменять полимерные молекулы так, чтобы их свойства больше соответствовали гигиене окружающей среды. Одним из них - химическое присоединение светочувствительных молекулярных групп к макромолекулярным цепям через правильные интервалы. Когда пластик, изготовленный из такого полимера, подвергается действию солнечного света, светочувствительные группы поглощают излучение, что приводит к расщеплению полимера в местах их присоединения. Остальное - дело природы. Образующиеся небольшие фрагменты легко подвергаются биоразложению. Другой способ подчинить свойства пластика требованиям гигиены природы - ввести в них молекулярные группировки, считающиеся деликатесом у некоторых микроорганизмов. Микроскопические чревоугодники берут в этом случае на себя труд расщепления длинных молекул на короткие кусочки. Находки такого рода, можно надеяться, приведут к тому, что проблема пластиковых отходов начнет постепенно отступать и, в конце концов, уйдет в прошлое.
|
Любое общество старается обеспечить себя достаточным количеством пропитания, жильем и здоровой окружающей средой. Когда эти элементарные требования выполнены, можно подумать и о комфорте. Сегодня наше стремление к увеличению количества товаров, энергии и большей обеспеченности средствами передвижения пришло в столкновение со стремлением сохранить здоровую окружающую среду. Нашей главной заботой стала защита окружающей среды в условиях роста численности населения, его продолжающегося концентрирования (урбанизации) и повышения жизненного стандарта.
Ухудшение состояния окружающей среды и, как следствие, угроза здоровью и состоянию экосистемы - явление не новое. Нарушения в окружающей среде, вызванные деятельностью человека, прослеживаются с древнейших времен. Проблема нечистот возникла одновременно с появлением городов. Задолго до двадцатого столетия лондонский воздух был загрязнен дымом очагов и каминов. Ранним проявлением проблем индустриальной гигиены была малая продолжительность жизни трубочистов из-за подверженности их раковым заболеваниям, что теперь мы можем объяснить длительным воздействием сажи, содержащей следы канцерогенов (многоядерных ароматических углеводородов).
|
Однако то, что загрязнение окружающей среды не есть новейшее изобретение, - слабое утешение. Проблемы загрязнения дают о себе знать все более явственно, и мы научились распознавать трудноуловимые взаимодействия в окружающем мире и обнаруживать вторичные эффекты, которые прежде оставались незамеченными. Некоторые нарушения окружающей среды принимают глобальный характер. Трагедия в Бхопале предельно ярко высвечивает существующую дилемму. Эта трагедия произошла в стране, страдающей от голода. Токсичные вещества применялись для производства продуктов питания, ежегодно спасавших многие тысячи людей от голодной смерти.
Однако следует заметить, что человечество по-настоящему озабочено важностью сохранения здоровой окружающей средой, и это обнадеживает. Громадное большинство граждан всех политических направлений заявляют о готовности платить более высокие цены за продукты (такие, как не содержащий свинца бензин) и более высокие подоходные налоги ради оздоровления окружающей среды.
|
Выработка эффективной стратегии защиты окружающей среды требует информированности и знаний. Мы должны уметь ответить на следующие вопросы:
Какие потенциально опасные вещества содержаться в воздухе, воде, почве и пище?
Чем вызвано их появление?
Как можно решить проблему - полностью или хотя бы отчасти (использование альтернативных продуктов, процессов)?
Как зависит степень опасности от длительности воздействия данного вещества? Как следует подходить к выбору одного из вариантов, обещающих положительный эффект?
Ясно, что на химиков ложиться главная ответственность за правильность ответов на три первых решающих вопроса. Чтобы определить, какие вещества присутствуют в окружающей среде, аналитики должны разрабатывать все более и более чувствительные и селективные методы. Обнаружение источников может потребовать проникновения в детали процессов, которые ведут от исходного загрязнения к конечным вредным или токсичным продуктам. Если для удовлетворения энергетических нужд приходится довольствоваться более низкосортным топливом, то какие катализаторы и какие новые процессы следует разработать, чтобы не усугубить проблемы кислотных дождей и канцерогенных выбросов работающих на угле электростанций.
Четвертый вопрос - о допустимой длительности воздействия вредного вещества - принадлежит компетенции медицины, токсикологии и эпидемиологии. Теперь, когда общество осознало, что существует обратная связь между степенью понижения риска и затратами на ее достижение, перед этими дисциплинами встают серьезные проблемы. Медики должны уточнить данные о степени риска, обусловленного присутствием, например, свинца в воздухе, хлороформа в питьевой воде, радиоактивного стронция в молоке, бензола в атмосфере производственных помещений и формальдегида в жилых домах. Необходимо научиться взвешивать риск и издержки, связанные с присутствием этих соединений, положив на другую чашу весов блага, которые мы теряем, ограничивая их использование. И что более важно, мы не можем позволить себе роскошь стремиться любой ценой устранить вероятность риска вообще, поскольку по мере приближения уровня риска к нулю цена устремляется к бесконечности.
Наконец, выбор вариантов решения проблемы должен принадлежать обществу. Химики и специалисты в других областях, связанных с экологией, несут особую и весьма серьезную ответственность за информированность на самой квалифицированной и объективной научной экспертизе. Долг ученых - ознакомить общество, средства массовой информации и правительство с реальной картиной, причем на языке, свободном от профессионального жаргона. Ученые должны дать научное обоснование предлагаемого решения и указать, что нас ждет впереди.
Химические системы
Формы движения материи
Окружающий нас мир богат своими формами и многообразием происходящих в нем явлений. Все существующее представляет собой различные виды движущейся материи, которые находятся в состоянии непрерывного движения и развития. Движение как постоянное изменение присуще материи в целом и каждой ее мельчайшей частице. Можно выделить следующие формы движения материи:
нагревание и охлаждение тел;
излучение света;
электрический ток;
химические превращения;
жизненные процессы и т.д.
Формы движения характеризуются тем, что одни могут переходить в другие, например, механическое движение может переходить в тепловое, тепловое -- в химическое, химическое -- в электрическое и т.д. Эти переходы свидетельствуют о единстве и непрерывной связи качественно разных форм материи. Но при всех разнообразных переходах одних форм движения в другие соблюдается основной закон природы -- закон вечности материи и ее движения, который распространяется на все виды материи и все формы ее движения: ни один из видов движения материи и ни одна из форм ее движения не могут быть получены из ничего и превращены в ничто.
Вещества и их свойства
Веществом называется отдельный вид материи, обладающий при данных условиях определенными физическими свойствами. Примеры вещества: кислород, вода, железо.
Для того чтобы установить свойства вещества, нужно иметь его в чистом виде, но в чистом виде вещества в природе не встречаются. Природные вещества представляют из себя смеси, состоящие иногда из очень большого числа различных веществ. Так, например, природная вода всегда содержит растворенные в ней соли и газы. Иногда очень малое содержание примеси может привести к очень сильному изменению некоторых свойств вещества. Например, содержание в цинке лишь сотых долей железа или меди ускоряет его взаимодействие с соляной кислотой в сотни раз. Когда одно из веществ находится в смеси в преобладающем количестве, вся смесь обычно носит его название.
Чистое вещество всегда однородно, смеси же могут быть однородными и неоднородными. Однородными называются смеси, в которых ни непосредственно, ни при помощи микроскопа нельзя обнаружить частиц этих веществ вследствие ничтожно малой их величины. Такими смесями являются смеси газов, многие жидкости, некоторые сплавы. В неоднородных смесях неоднородность можно обнаружить при помощи микроскопа или даже невооруженным глазом. Примерами неоднородных смесей могут служить различные горные породы, почва, пыльный воздух, мутная вода. Кровь, например, тоже относится к неоднородным смесям, и при рассмотрении в микроскоп можно увидеть, что она состоит из бесцветной жидкости, в которой плавают красные и белые тельца.
Химическая промышленность выпускает химические продукты, которые также содержат какое-то количество примесей. Для указания степени их чистоты существуют специальные обозначения, или квалификация:
технический (техн);
чистый (ч.);
чистый для анализа (ч.д.а.);
химически чистый (х.ч.);
особо чистый (о.ч.).
Продукт с квалификацией «техн» обычно содержит значительное количество примесей, «ч.» -- меньше, «ч.д.а.» -- значительно меньше, «х.ч.» -- меньше всего. С маркой «о.ч.» выпускаются лишь некоторые продукты. Допустимое содержание примесей в химическом продукте той или иной квалификации устанавливается государственными стандартами.
Химия оказывает на окружающую среду с одной стороны отрицательно, а с другой стороны положительное влияние. Отрицательное влияние: химия прямо или опосредованно затронула практически все компоненты окружающей среды -- сушу, атмосферу, воду Мирового океана, внедрилась в природные круговороты веществ. В результате этого нарушилось сложившееся в течение миллионов лет равновесие природных процессов на планете, химизация стала заметно отражаться на здоровье самого человека.
Положительное: Успехи человека в решении больших и малых проблем выживания в значительной мере были достигнуты благодаря развитию химии, становлению различных химических технологий.
Огромное значение химия имеет для успешной работы сельскохозяйственного производства, фармацевтической промышленности, обеспечения быта человека.
Из сказанного вытекает, что место и роль химии в современной цивилизации должны рассматриваться системно, т. е. во всем многообразии отношений, существующих между обществом и природной средой в рамках критерия экологической безопасности.
Ежедневно мы можем видеть, как вещества подвергаются различным изменениям, например, свинцовая пуля, ударившись о камень, нагревается так сильно, что свинец плавится, превращаясь в жидкость; стальной предмет, находящийся под действием влаги, покрывается ржавчиной; дрова в печи сгорают, оставляя кучку пепла, опавшие листья деревьев постепенно истлевают, превращаясь в перегной и т.д.
При плавлении свинцовой пули ее механическое движение переходит в тепловое, но этот переход не сопровождается химическим изменением свинца, так как твердый и жидкий свинец представляет одно и то же вещество. Но если тот же свинец в результате длительного нагревания на воздухе превращается в оксид свинца, то получается новое вещество с совершенно иными свойствами. Точно так же при гниении листьев, появлении ржавчины на стали, горении дров образуются совершенно новые вещества.
Химическими называются явления, при которых из одних веществ образуются другие, новые вещества, а наука, изучающая превращение вещества, называется химией. Она изучает состав и строение веществ, зависимость их свойств от состава и строения веществ, условия и пути превращения одних веществ в другие.
Химические изменения всегда сопровождаются изменениями физическими, поэтому химия и физика тесно связаны. Химия также тесно связана с биологией, так как биологические процессы сопровождаются непрерывными химическими превращениями. Однако, каждая форма движения имеет свои особенности, и химические явления не сводятся к физическим процессам, а биологические -- к химическим и физическим.
От обнаружения к защите
Все стратегии защиты окружающей среды должны основываться на знании действительных пороговых значений опасных концентраций и нашей способности обнаружить нежелательный компонент задолго до того, как его концентрация достигает такого значения. В ряде случаев обнаружение может быть эквивалентно защите.
К сожалению, средства информации, общество и правительственные учреждения слишком часто ставят знак равенства между обнаружением и опасностью. Такая реакция основана на общем заблуждении, что вещество, обладающее выраженной токсичностью при некоторой определенной концентрации, токсично всегда. Существует множество примеров, показывающих, что это не так. Вспомните моноксид углерода. Этот обычный компонент атмосферы становится опасным при концентрациях, превышающих 1000 млн. долей. Считается, что продолжительное воздействие моноксида углерода в концентрациях, превышающих 10 млн. долей, отрицательно сказывается на здоровье. Тем не менее, мы не настаиваем на полном устранении СО из атмосферы! Это было бы глупо (да и невозможно!), поскольку мы живем - и не плохо - в среде, всегда содержащей легко обнаружимые количества СО, порядка 1 млн. доли.
Другой интересный пример - селен. Некоторые растения, растущие на относительно богатых селеном почвах, имеют тенденцию накапливать этот элемент в таких количествах, которые приводят к отравлению жвачных животных. К числу указанных растений относятся астрагал (Astragalus). Пшеница также может накапливать селен, и хотя на людях это сколько-нибудь заметно не сказывается, куры, которых кормили ею, дают ненормальное потомство. В то же время сейчас известно, что селен - жизненно важный компонент пищи крыс, цыплят и свиней. Более того, селен в определенных концентрациях является природным антиканцерогенном; он входит в состав глутатион-пероксидазы - фермента, разрушающего вредные гидропероксиды. В Китае в популяциях людей с низким содержанием селена в крови наблюдаются следующие отклонения от нормы: дети часто страдают множественным миокардитом (болезнь Кишана), высока смертность взрослых от рака, особенно распространен рак печени. Очевидно, что селен, является необходимым для человека и животных элементом при одних концентрациях и токсичным при других. Ежедневная норма потребления селена для взрослых, рекомендуемая Национальным советом по здравоохранению, составляет 50 - 100 мкг. Приведенный пример ясно показывает, что присутствие в окружающей среде следов вещества, которое может быть токсичным при высоких концентрациях, еще не свидетельствует об опасности.
Некоторые люди усиленно добиваются ориентированного на нулевой риск подхода к защите окружающей среды. Нулевой риск означает достижение абсолютной и полной гарантии от любой возможной опасности. В приведенном выше примере с моноксидом углерода - это полное, до последней молекулы, удаление его из атмосферы. Сейчас такое нереалистичное стремление к нулевому риску постепенно вытесняется менее примитивной философией, которая ставит действия, связанные с наличием риска, в зависимость от оценки его уровня. Что касается будущего, то наилучшим капиталовложением была бы организация долговременных изысканий в области фундаментальной науки об окружающей среде и работ по совершенствованию диагностических методов. Это позволило бы избежать необходимости прибегать к дорогостоящим аварийным программам.
Повышение эффективности измерений, проводимых в окружающей среде, требует более совершенных инструментов. Проблема состоит в том, чтобы определять следы искомого соединения в сложной смеси, содержащей много безвредных веществ. Одним из примеров успеха, достигнутого в повышении селективности аналитических методов, может служить разработка методов разделения и количественного определения каждого из 22 изомеров тетрахлордиоксина в концентрациях порядка триллионных долей (т.е. 1:1012)!
Легко реагирующие соединения, присутствующие в атмосфере, нельзя доставить для анализа в лабораторию. Это порождает специфические сложности, связанные с необходимостью дистанционного обнаружения и определения содержания таких соединений в местах их образования. Примером успехов, достигнутых в этой области исследований, может служить измерение концентраций формальдегида и азотной кислоты в смоге над Лос-Анджелесом методом инфракрасной спектроскопии, позволившим регистрировать поглощение излучения на расстоянии одного километра. Благодаря этим экспериментам удалось установить содержание формальдегида, муравьиной и азотной кислот, пероксиацетилнитрата и озона при их одновременном присутствии в воздухе на уровне миллиардных долей.
Все более важным становится выяснение химического состояния компонентов окружающей среды, поскольку, как это теперь известно, и токсичность, и легкость перемещения существенно зависят от того, в какой химической форме находится данный загрязнитель. Испытания, проведенные на животных, показали, что один из 22 структурных изомеров тетрахлордиоксина в тысячу раз токсичнее самого токсичного из всех остальных. Эти примеры говорят о важности аналитических методов, которые позволяют не только установить концентрацию потенциального загрязнителя, но и идентифицировать химическую форму, в которой он присутствует. К числу мощных средств, используемых для решения этой проблемы, относятся электрохимия, хроматография и масс-спектрометрия.
Борьба с кислотными дождями
Кислотные дожди - одна из самых очевидных проблем загрязнения воздуха, стоящих перед нами. Кислые вещества и соединения, которые служат их источником, образуются при сжигании минеральных топлив в энергетических установках и на транспорте. Это главным образом кислоты - производные оксидов серы и азота. Существует ряд природных источников таких соединений: они образуются во время грозы или извержения вулкана, в результате жизнедеятельности бактерий, однако, исключая нечастые извержения, вклад этих источников невелик. Основными “поставщиками” оксидов углерода и азота являются автомобильный транспорт, электростанции и всякого рода плавильные печи.
Влияние кислотных дождей наиболее ощутимо и известно широкой публике в Европе и на северо-востоке США, но зоны риска включают также Канаду и, возможно, калифорнийскую Сьерру, Скалистые горы и Китай. В некоторых местах наблюдалось выпадение осадков, приближающихся по кислотности к столовому уксусу. Масштабы ущерба от кислотных дождей продолжают оставаться предметом дискуссий. Первоначально внимание фокусировалось на вреде, приносимом озерным и речным экосистемам, однако в дальнейшем стали учитываться и такие дорогостоящие последствия, как порча зданий, мостов и оборудования. Труднее всего количественно оценить влияние загрязненного воздуха на здоровье человекам.
Наибольший урон наносится озерам, в которых вода обладает слабыми буферными свойствами. В присутствии природных щелочных буферов кислые соединения, приносимые дождем (большей частью серная и азотная кислоты, в меньших количествах органические кислоты), нейтрализуются. Однако озера, лежащие на гранитных (кислых) породах, весьма подвержены действию попадающих в них кислот, способных переводить в раствор ионы таких металлов, как алюминий и марганец, что может повлечь подавление роста растений и водорослей, а в некоторых озерах - сокращение или вообще исчезновение популяций рыб. Значительный ущерб наносят кислотные дожди и растительности, причем проявление их влияния может быть самым различным - от дефолиации до разрушения тонкой корневой системы.
В таком районе, как северо-восток США, главными источниками подобных загрязнений являются электростанции, работающие на угле с высоким содержанием серы. Одно из возможных средств, предотвращающих выброс загрязнителей, - это установка химических газоочистителей - устройств, в которых нежелательные примеси, содержащиеся в промышленных газах, растворяются, выводятся в осадок или поглощаются. Катализаторы, снижающие выбросы оксидов азота как стационарными, так и мобильными устройствами, - это еще один пример, иллюстрирующий важную роль химии в борьбе за качество воздуха.
Различные способы борьбы с кислотными дождями требуют ежегодных вложений миллиардов долларов. Когда ставки так высоки, важно, чтобы атмосферные процессы, включающие перемещение, химические превращения и конечную “судьбу” загрязнителей, были основательно изучены.
Кислоты выпадают либо вместе с дождем и снегом (“мокрые” осадки), либо в виде аэрозолей газообразных кислых соединений, оседающих на почве, листьях растений и т.д. (“сухие” осадки). То, что заканчивает свой путь в виде осадков, обычно проникает в атмосферу в совершенно иной форме. Например, содержащаяся в угле сера окисляется в газообразный диоксид и в таком виде выбрасывается из печных труб. Перемещаясь в атмосфере, диоксид медленно окисляется и реагирует с водой, образуя серную кислоту, в виде которой сера может вернуться на землю за сотни миль вниз по ветру.
Пути образования оксидов азота, их химических превращений и выведения из атмосферы также чрезвычайно сложны. Азот и кислород, нагреваемые до высоких температур в силовых установках, доменных печах и автомобильных двигателях, образуют моноксид азота, N0, который реагирует с окислителями с образованием диоксида, N02, а иногда и азотной кислоты, HNO3, в качестве конечного продукта. Количественные оценки мирового баланса оксидов азота - источников их поступления и мест выведения - содержат еще много неясного.
Пока наши знания о биогеохимических циклах различных химических форм азота, серы и углерода, об их источниках и превращениях в мировых масштабах не будут исчерпывающими, выбор стратегии контроля за загрязнением атмосферы затруднителен. Химия атмосферы и окружающей среды имеет первостепенное значение для создания более здорового и чистого местообитания. Развитие надежных методов определения следов примесей в воздухе, изучение кинетики важных атмосферных реакций и открытие новых, более эффективных химических процессов, позволяющих сократить выделение загрязнителей, - вот цели, которые должны войти в национальную программу действий на грядущее десятилетие.