Оборудование для испытания автомобилей на пассивную безопасность




Контрольная работа

По дисциплине: "Испытания автомобиля и трактора"

 

 

Курган 2011

 


Раздел № 1 Организация и технологическая база испытаний

Оборудование для испытания автомобилей на пассивную безопасность

Анализ столкновений, наездов, переворачиваний автомобилей показал, что тяжесть последствий значительно зависит от конструкции автомобиля. Комплекс мероприятий, способствующих уменьшению тяжести последствий аварии для водителя и пассажиров, относят к так называемой пассивной безопасности автомобиля.

Испытания автомобилей на пассивную безопасность проводят на полигонах или на специальных стендах. При испытаниях на полигонах используют комплектный автомобиль, а при стендовых - кузов (кабину) или отдельные узлы (рулевое управление, сиденья и др.).

Целью испытаний является проверка соответствия автомобилей и их отдельных узлов нормативным требованиям по пассивной безопасности. Одновременно решаются задачи поиска технически и экономически обоснованных путей дальнейшего повышения безопасности движения.

Методы полигонных испытаний автомобилей на пассивную безопасность

При испытаниях автомобилей на полигонах воспроизводят наиболее типичные аварийные ситуации: лобовое столкновение; опрокидывание автомобиля; наезды сзади и сбоку. Одним наиболее распространенным лобовым столкновением в полигонных условиях является столкновение с неподвижным препятствием. На автополигоне НАМИ такие испытания проводят на специальной площадке размером 10X300 м. Железобетонное препятствие представляет собой параллелепипед соответственно с высотой, шириной и длиной, равными 1,5x3,5x5 м. Масса препятствия составляет около 90 тыс. кг. Лицевая поверхность препятствия перпендикулярна концевому участку полосы разгона и облицована фанерными щитами толщиной 20 мм. Испытываемый автомобиль разгоняют буксирующим тягачом или лебедкой до скорости 48-53 км/ч прямо по направляющему рельсу. Столкновение с бетонным препятствием при скорости автомобиля около 50 км/ч идентично встречному столкновению двух автомобилей, движущихся со скоростями 70-75 км/ч. Процесс столкновения с препятствием фиксируется скоростными кинокамерами с частотой съемки, примерно равной 1000 кадров в секунду. По результатам экспериментов оценивают надежность крепления ремней безопасности, сидений, дверных замков и перегородки между багажным отсеком и пассажирским салоном, а также возможность эвакуации пассажиров из салона автомобиля после аварии. Аппаратура, предназначенная для измерения скорости автомобиля в момент столкновения, должна обеспечивать измерения с погрешностью < 1%. Так, например, на автополигоне НАМИ используют систему фотостворов, которые расположены на расстоянии 5 и 10 м от препятствия. Время движения автомобиля на участке между фотостворами фиксируется с точностью до тысячных долей секунды.

К числу очень опасных дорожно-транспортных происшествий относится опрокидывание автомобиля. Воспроизвести эту аварийную ситуацию на полигоне можно наездом колес какой-либо одной стороны автомобиля, движущегося с определенной скоростью, на препятствие-трамплин. Получаемые результаты зависят от большого числа факторов: точности наезда на трамплин, массы автомобиля и характера распределения масс по его длине, жесткости подвесок и шин, аэродинамических характеристик автомобиля и др. Более стабильные результаты получают при использовании методики, по которой авария опрокидывания имитируется путем сбрасывания автомобиля со специальной подвижной платформы. Испытываемый автомобиль устанавливают на опорную площадку платформы, которая наклонена на 23° относительно оси автомобиля в поперечной плоскости. Нижний конец опорной площадки имеет прочный бортик высотой около 100 мм, в который упираются боковины шин. Платформа движется горизонтально в направлении, перпендикулярном продольной оси установленного на опорной площадке автомобиля, с постоянной скоростью 48 км/ч. По нормативным данным, платформа затормаживается со скорости 48 км/ч до полной остановки на расстоянии не более 0,914 м, сохраняя свое строго горизонтально-поступательное движение того же направления. Замедление платформы в процессе торможения должно быть не менее 20g в течение 0,04 с. Разгоняют платформу до требуемой скорости тягачом. Требуемое движение платформы обеспечивается направляющим устройством, а торможение - буферным устройством. В результате интенсивного замедления платформы установленный на ней автомобиль, продолжая движение по инерции, падает на поверхность испытательной площадки и переворачивается несколько раз. В процессе испытаний скорость платформы измеряют с помощью фотостворов. Для оценки пассивной безопасности конструкции определяют деформации кузова, размеры остаточного пространства салона; изучают состояние дверей, ремней безопасности и мест их крепления, стекол кузова, манекенов и т. д.

Для проведения испытаний на опрокидывание грузовых автомобилей и автобусов их сбрасывают с откоса с уклоном около 60%. В кабине автомобиля (салоне автобуса) на сиденьях размещают манекены, часть которых прикрепляют ремнями безопасности. В салоне устанавливают кинокамеры (обычные и скоростные) для съемки перемещений манекенов в процессе опрокидывания автомобиля. Стоящий на краю откоса автомобиль (автобус) приподнимают за одну сторону подъемником до тех пор, пока он не начнет падать вниз по уклону, многократно переворачиваясь. С помощью установленных на испытательной площадке кинокамер ведется непрерывная фиксация всех этапов эксперимента.

Аварию опрокидывания можно имитировать также при сбрасывании автомобиля, расположенного вверх колесами под углом к горизонту, на плоскую горизонтальную площадку. Площадка должна иметь твердую основу и быть покрыта листом фанеры толщиной 15 мм. Высота подъема автомобиля составляет 0,35 м и определяется расстоянием от нижней точки крыши до поверхности площадки. В момент касания крыши угол наклона продольной оси автомобиля относительно поверхности площадки должен составлять 5°, а поперечной 25°. При таком искусственном опрокидывании получают стабильные результаты, соответствующие реальным, поскольку во многих дорожно-транспортных происшествиях наблюдается переворачивание автомобиля в воздухе с последующим ударом о дорожное полотно.

Обязательной является оценка легкового автомобиля с позиций пассивной безопасности при наезде сзади. Цель таких испытаний - определение зоны деформации кузова при ударе сзади, проверка надежности и пожаробезопасности. Проверяются также перегрузки шеи пассажиров-манекенов, эффективность действия и прочность подголовников. Испытания проводят при скорости столкновения 35 ± 3 км/ч, топливный бак должен быть заполнен топливом на 90%. Манекены, размещенные в салоне автомобиля, прикреплены ремнями безопасности. На автополигоне НАМИ для испытаний, имитирующих наезд сзади, применяют двухосную тележку с жесткой рамой и ударной плитой размером 800X2500 мм. Тележка имеет дистанционно управляемые гидравлические тормоза с электроприводом. Разгонять тележку до заданной скорости можно следующими способами: движением по направляющим под уклон достаточной длины и крутизны, буксировкой, реактивным ускорителем и др. Для создания ударного импульса можно также использовать маятниковое устройство с радиусом качания не менее 5 м (ГОСТ 21959-76). Масса ударного устройства (тележки или маятника) должна составлять 1100 ± 20 кг.

Аналогично проводят испытания на боковой удар. В качестве ударного устройства применяют также тележку или маятник (ГОСТ 21961-76). В испытываемом автомобиле, как правило, на переднем и заднем сиденьях со стороны удара размещают два манекена, прикрепленных ремнями безопасности. В процессе эксперимента измеряют перегрузки туловища и головы манекенов, деформации боковых частей кузова, остаточное пространство салона и ряд других параметров, фиксируют случаи самооткрывания дверей в момент приложения ударного импульса, состояние стекол кузова, двигателя и агрегатов шасси, проверяют работоспособность дверей и дверных замков противоположной удару стороны автомобиля (двери должны открываться без применения инструмента).

По результатам описанных испытаний автомобиля на лобовое столкновение, опрокидывание, наезд сзади и сбоку можно дать комплексную оценку соответствия конструкции требованиям пассивной безопасности и в случае необходимости разработать рекомендации о необходимых изменениях и конструктивных усовершенствованиях.

Методы лабораторных испытаний кузовов и кабин на удар

В связи с необходимостью повышения безопасности конструкции автомобиля все большее распространение получают стендовые испытания на пассивную безопасность, так как на стенде часто можно ограничиться разрушением только кузова или его отдельной части, а в некоторых случаях возможно получить искомые результаты без разрушения конструкции. Естественно, что при этом повышается сопоставимость результатов отдельных экспериментов и достигается существенная экономия средств.

Испытания натурных образцов кузовов и автомобилей в сборе на удар производят на специальных динамических стендах-катапультах. Так, например, санный имитатор столкновений (рис. 1) основан на использовании энергии сжатого газа (исходное давление примерно 14-21 МПа).

 


Рис. 1. Принципиальная схема санного имитатора столкновений

 

Стенд имеет две цилиндрические камеры: переднюю 3 и заднюю 7, разделенные перегородкой 5 с центральным отверстием. В передней камере размещены поршень 4 со штоком, соединенным с динамическими салазками 1. Между торцом поршня 4 и перегородкой 5 имеется специальное уплотнение по периметру отверстия. Для изменения давлений р1 и р2 предназначены плавающие поршни 2 и 8. В исходном состоянии система находится в равновесии, так как активная площадь со стороны большего давления р2 мала. При введении небольшого количества газа в пространство между перегородкой 5 и поршнем 4 равновесие нарушается, высокое давление р2 начинает действовать на всю площадь поршня, что приводит к быстрому разгону салазок 1 с закрепленным на них кузовом автомобиля или другим объектом испытаний. При моделировании лобового столкновения используют принцип реверсирования процесса удара, т. е. стоящий кузов резко разгоняют назад до скорости 113 км/ч, причем инерционные перегрузки достигают 40g. Ускорение разгона кузова можно изменять, управляя перепадом давлений в отверстии с помощью стержня переменного сечения 6. Описанный стенд можно использовать для исследований перегрузок, действующих на манекенов-пассажиров, для проверки работы оборудования салона автомобиля на соответствие требованиям пассивной безопасности и для оценки эффективности новых конструктивных решений по повышению травмобезопасности. Для испытаний кузовов и автомобилей на удар применяют также пружинную катапульту (рис. 2).


а - автомобиль в исходном положении; б - момент столкновения с барьером

Рис. 2. Стенд-катапульта

 

На катапульте натяжение пружин 2 осуществляют с помощью лебедки 5, после чего пружины запирают пневматическим спусковым механизмом 4. Максимальная масса испытываемого объекта равна 2200 кг. От спускового рычага 6 скорость движения объекта в момент столкновения с барьером 1 составляет 50 км/ч. На катапульте кузова и автомобили в сборе испытывают на различные виды столкновений (рис. 3). Возможно также испытание отдельных узлов кузова (например, передка). С этой целью узел закрепляют на динамической тележке 3 (рис. 2), а определенное, заранее выбранное торможение, обеспечивают специальным замедлителем.

В лабораторных условиях с некоторым приближением могут быть воспроизведены условия нагружения силового каркаса кузова при опрокидывании легкового автомобиля, т. е. имитированы испытания на опрокидывание, при проведении которых кузов устанавливают, как показано на рис. 4. Согласно ГОСТ 21960-76 масса ударной плиты 600x1600 мм должна составлять 60% массы испытываемого автомобиля в снаряженном состоянии, а скорость при ударе 2,7-3,3 м/с.

 


Рис. 3. Варианты испытаний на столкновение на пружинном стенде-катапульте

 

Одной из известных методик испытаний кабин грузовых автомобилей на пассивную безопасность является методика, применяемая в Швеции при проверке прочности кабин грузовых автомобилей, имеющих общую массу более 7000 кг. Перед испытаниями полностью комплектную кабину устанавливают и закрепляют на отдельном шасси или специальной раме точно так же, как на автомобиле. Рама надежно соединена со станиной испытательного стенда. Двери кабины закрыты, но не заблокированы. Методика испытаний предусматривает три основных режима нагружения, соответствующих типичным аварийным ситуациям. Статическое нагружение на потолок кабины с силой, соответствующей двойному весу снаряженного автомобиля с водителем, но не более 150 кН. Нагрузка распределяется на несущие детали кабины (режим приближенно воспроизводит ситуацию переворачивания автомобиля). Удар маятником спереди по переднему верхнему углу кабины (имитируется падение автомобиля с откоса). Удар направлен под углом 15° к продольной оси автомобиля с энергией около 30 кДж. Применяемый при испытаниях маятник имеет форму правильного цилиндра диаметром 0,6 м, массой не менее 1000 кг. Удар маятником по задней стенке кабины под прямым углом к ней с энергией 30 кДж. Маятник этой серии испытаний массой не менее 1000 кг имеет прямоугольную форму с шириной 1600 мм и высотой 500 мм (высота падения 2 м). Испытание воспроизводит аварийную ситуацию, когда при резкой остановке незакрепленный на платформе груз сминает заднюю стенку кабины.

 

Рис. 4. Установка кузова легкового автомобиля для имитации опрокидывания в лабораторных условиях

 

Выдержавшими испытания считаются такие кабины, которые после действия всех перечисленных видов нагрузок не разрушились и сохранили хотя бы минимальное пространство салона, необходимое для стандартных манекенов, имитирующих водителя и пассажира. Кроме того, необходимо, чтобы кабина не была оторванной от рамы автомобиля, двери кабины самопроизвольно не открывались, а последующее их отпирание не было затруднено. Из-за некоторой условности указанной методики испытаний кабин нельзя с уверенностью утверждать, что в реальных аварийных ситуациях кабина, выдержавшая эти испытания, будет отвечать всем требованиям пассивной безопасности.

Манекены для испытаний на пассивную безопасность

Для изучения перемещений людей внутри кузова (кабины) автомобиля во время испытаний на столкновение, опрокидывание и т. д. и для оценки соответствия конструкции требованиям пассивной безопасности применяют специальные манекены.

Одной из обязательных характеристик манекенов для испытаний на пассивную безопасность является так называемая представительность (или репрезентативность). Размеры тела человека и его масса колеблются в очень широких пределах. В соответствии с этим манекены по своим основным размерам разбиты на несколько групп представительности. Так, манекены, соответствующие наиболее распространенной группе мужчин (50% представительность), имеют рост 1730 мм и массу 75 кг. Манекен 95% представительности имеет следующие основные размеры: рост 1840-1850 мм, ширину плеч 480 - 494 мм, высоту колен 585- 589 мм.

Манекены 50% представительности обычно используют для определения положения различных контрольных точек, а манекены 95% представительности самых больших размеров - уровня перегрузок различных частей тела во время испытаний и оценки остаточного пространства салона после испытаний на пассивную безопасность. Руки, ноги и голова манекена шарнирно соединены с туловищем так, что можно в точности воспроизвести движение в суставах человека. Массы отдельных частей манекена (туловища, головы, руки, ноги) соответствуют массам этих же частей тела человека. Основным частям манекена (туловищу и голове) придают объемную жесткость, сопоставимую с жесткостью живого тела. В манекен устанавливают не менее двух преобразователей ускорений (замедлений), причем один монтируют в голове, он измеряет ее продольные перегрузки, а другой - в туловище для определения его перегрузки. Сигналы от преобразователей после усиления передаются на записывающую аппаратуру. Для уточнения прогнозов о возможной тяжести последствий аварии применяют усовершенствованные манекены сложной конструкции, с помощью которых получают информацию не только о величине возможных перегрузок отдельных частей тела, но и о силе давления на грудную клетку (например, со стороны ремня безопасности), о равномерности распределения давления по поверхности контакта туловища с ремнем и др. Эти манекены достоверно имитируют различные травмы типа синяков, ушибов, порезов тканей тела, разрушения костей.

 

Раздел № 2 Метрологическое обеспечение испытаний



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: