Резонансные характеристики системы двух связанных контуров.




Под амплитудно-частотными резонансными характеристиками си­стемы двух связанных контуров будем подразумевать зависимость амп­литуд токов первого и второго контуров от частоты. Считая, что оба контура настроены на одну и ту же частоту w0 выделим модули тока первого и второго контуров при наличии связи между ними.

Если записать в символической форме и то

(11)

где Модуль (11) есть

(12)

На основании (7), с учетом того что и имеем

(13)

 

где и . Запишем Модуль (13) с учетом (12) и (9)

 

Выражения (12) и (14) представляют собой уравнения резонансных характеристик для I 1 и I 2 соответственно в неявной относительно частоты форме. Таким образом, если построить зависимости модулей I 1 и I 2 от частоты, то это и будут амплитудно-частотные резонансные характеристики. При построении их будем исходить из двух случаев связи между контурами; слабой и сильной. Сначала займемся построе­нием I 1(w). Как видно из (12), частотную зависимость I 1 определяет частотная зависимость Z (w), поскольку э. д. с. источника Е от частоты не зависит. Таким образом, построение сводится сначала к построению зависимости Z (w), а затем — зависимости I 1(w) как частного от деления Е на Z.

Выразив модуль Z (w) через компоненты

построим попарно зависимости r 1 и r вн, Х 1 и Х вн от частоты, а Z найдем графически, как геометрическую сумму r 1+ R вн и Х 1+ Х вн. I 1 строим в соответствии с (12). Построение проводим при небольших расстройках относительно резонансной частоты. Получаемые зависи­мости при слабой связи между контурами имеют вид, показанный на рис. 3, а при сильной связи—на рис. 4.

 

 

Рис. 3. Частотные зависимости входного сопротивления, его составляющих и тока I 1 системы двух связанных контуров при слабой связи между ними


Рис. 4. Частотные зависимости входного сопротивления, его составляющих и тока I 1 системы двух связанных контуров при сильной связи между ними

 

Как видно, при слабой связи между контурами вследствие малости Х ВН по сравнению с Х 1 кривая X (w) пересекает ось частот только в одной точке wо. При сильной связи между контурами вследствие значительной величины ХВН, которая на некоторых частотах превы­шает по абсолютной величине Х 1, имея обратный знак, суммарная кри­вая Х (w) пересекает ось частот в трех точках: w01, w0 и w02. Други­ми словами, результирующее реактивное сопротивление системы равно нулю не только на частоте w0, но и на частотах w01 и w02, называемых частотами связи. Учитывая еще то обстоятельство, что при сильной связи между контурами сопротивления R ВН на частоте w0 и в близлежащей области большие, чем при слабой, понятен двугорбый харак­тер кривых Z (w) и I 1(w) с максимумами на частотах w 1 и w 2.

Очевидно, имеется граничная связь, превышение которой ведет к двугорбости амплитудно-частотной резонансной характеристики то­ка первичного контура. Такая связь называется первичной критиче­ской связью, а соответствующий ей коэффициент связи — первичным критическим коэффициентом связи (k кр1). Амплитудно-частотную ре­зонансную характеристику вторичного тока строим на основании по­лученных характеристик первичного тока и (14). Для того чтобы можно было сравнивать амплитудно-частотные резонансные характерис­тики первичного и вторичного токов, их надо строить на одном рисун­ке по отношению к резонансным значениям Z 2, т.е. и. . Согласно (14) Таким образом, для построения амплитудно-частотных характеристик вторичного то­ка достаточно перемножить координаты кривых I 1 (w) / I 1p и r 2 / Z 2 (w)

Указанные построения для связи, меньше критической, выполне­ны на рис. 5, а, а для связи, больше критической,— на рис. 2. 19, б. Как видно из рис. 5, б, двугорбость кривой первичного тока выра­жена резче, причем горбы разнесены дальше, чем у кривой вторично­го тока. Очевидно, возможна такая связь между контурами системы, когда двугорбость первичного тока уже наступит, а вторичного — еще нет. Такая связь, превышение которой ведет к появлению двугорбости у резонансной амплитудно-частотной характеристики вторичного тока, называется вторичной критической связью, а соответствующий ей коэффициент связи - вторичным критическим коэффициентом связи (k кр2).

 

Рис. 5. Амплитудно-частотные характеристики вторичного тока системы двух связанных контуров при слабой (а) и сильной (б) связях между ними

Максимальные значения вторичного тока I 2 при связи, больше вторичной критической, наблюдаются на частотах связи w01 и w02, при которых Х 1=0. Для того чтобы найти условия возникновения частот связи и определить их значения, (11) и (13) нужно предста­вить в явной относительно частоты форме и исследовать (13) на экс­тремум, т. е. установить, при каких относительных расстройках (e) вторичный ток будет максимальным и минимальным. Чтобы полу­чить выражения для I 1 и I 2 в явной относительно частоты форме, пере­пишем (11), подставив вместо Z его значение из (8)

Считая, что контуры настроены в резонанс (w1 = w2 = w0), выне­сем за скобки в знаменателе w0 L и, подставив на основании (2) получим

(15)

где ,

. (16)

Модуль тока равен

(17)

Подставив в (7) вместо М. его значение из (2) и домножив числитель и знаменатель (7) на w0 L 2 , найдем,

(18)

где . Выражения (13) и (18) — идентичн ы. Взяв модуль (18) и подставив значение модуля I 1 из (17), получим

(19)

Если частота питающего генератора равна резонансной частоте контуров, т. е. wг = w0 (e = 0), то (19) упрощается

В относительных единицах выражение, описывающее резонансную кривую для тока I 2, имеет вид

(20)

Выражения (17) и (19) соответствуют (12) и (14) и описывают амплитудно-резонансные характеристики токов I 1 и I 2 в явной относи­тельно частоты (расстройки e) форме.

Исследуем (19) на экстремум, для чего продифференцируем (19) по e и приравняем производную нулю, т. е. dI 2 / d e = 0. В результате получим . Данное уравнение имеет три корня:

(21)

При d 1 = d 2 получаем

(22)

Если первый корень (e1) действителен при любых соотношениях между k и d, то второй и третий корни (e2 и e3) имеют смысл только при k > d. При k < d подкоренное выражение будет мнимым и физи­ческого смысла не имеет. В этом случае физический смысл имеет только первый корень (e1), что говорит об одногорбости резонансной характеристики для I 2. При k > d физический смысл имеют все три корня, что говорит о двугорбом характере резонансной характерис­тики для тока I 2. Очевидно, вторичный критический коэффициент связи, лежащий на границе перехода от одногорбой кривой к двугор­бой, на основании (21) получается тогда, когда корни (21) обращаются в нуль: При d 1 = d 2 имеем:

k кр2 = d. (23)

Чтобы получить выражения для частот связи при k > k кр2, в (22) надо подставить значение e = а / Q = 1 — w02/w2. Тогда

(24)

Именно на частотах w01 и w02 выполняется условие резонанса, бла­годаря чему ток /а достигает максимума (рис. 5, б).

Третья резонансная частота получается из условия e1 =0, или e1=1- w02/w2=0; отсюда w = w0. При k > k кр2 на частоте w0 ре­зонансная характеристика тока I 2 имеет впадину. При k < k кр2, ког­да физический смысл имеет только первый корень, системе связан­ных контуров свойственна лишь одна резонансная частота w0 на которой наблюдается максимум тока I 2 (рис.5, а). Наличие одной резонансной частоты при k < kкр и появление частот связи при k > kкр хорошо иллюстрирует рис. 6.

Фазово-частотные резонансные характеристики системы двух свя­занных контуров представляют собой частотную зависимость фазово­го сдвига между токами и приложенной к системе э. д. с. Е. Как следует из (11), сдвиг фазы между током и э. д. с. Е зависит от угла -j, значение которого определяется (16). Сдвиг фазы между током и э. д. с. Е зависит от угла [см. (18) ] и от­личается от сдвига фазы между током и э.д.с. Е углом . Фазово-частотные характеристики системы двух связанных контуров изображены на рис. 7.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: