Теорема существования и единственности решения задачи Коши




Мгновенный центр скоростей

3.2.3 Мгновенный центр скоростей (МЦС)   Теорема Эйлера-Шаля доказывает, что любое непоступательное перемещение фигуры в плоскости можно осуществить поворотом вокруг некоторого неподвижного центра. В соответствии с этим легко доказывается, что при плоско-параллельном движении в каждый момент времени существует точка, неизменно связанная с плоской фигурой, скорость которой в этот момент равна нолю. Эту точку называют мгновенным центром скоростей (МЦС). В учебниках эту точку пишут с индексом V, например PV, CV. При определении положения МЦС скорость любой точки может быть записана: VM=VCV+VMCV, где точка СV выбрана за полюс. Поскольку это МЦС и VCV=0, то скорость любой точки определяется как скорость вращении вокруг мгновенного центра скоростей.     Из рис. 1.5 видно, что мгновенный центр скоростей лежит в точке пересечения перпендикуляров, проведенных к скоростям точек, при этом всегда справедливо соотношение         Рис. 1.5   На нижеприведенных рисунках показаны примеры определения положения мгновенного центра скоростей и приведены формулы для расчета скоростей точек.   Для рисунка 1.6: 1. СV совпадает с точкой В VB=0. Шатун АВ вращается вокруг точки В   2.   3. МЦС лежит в «бесконечности»     4.       Рис. 1.6       Рис. 1.7     Рис. 1.8   здесь VB II VA В этом случае МЦС находится в “бесконечности”, т.е       Рис. 1.9     Формулы справедливы при отсутствии проскальзывания в точке СV.             Рис. 1.10   Теоретическая механика Содержание краткой теории Примеры решения задач Обзорный курс

Теорема существования и единственности решения задачи Коши

Укажем достаточные условия существования и единственности решения задачи Коши

. (1)

Теорема Пикара. Пусть функция непрерывна в прямоугольнике

и удовлетворяет условию Липшица по y равномерно относительно x, т.е. , для всех x, и .

Пусть

,

тогда задача Коши (1) на промежутке имеет единственное решение .

Замечание. Условие Липшица в теореме Пикара можно заменить на требование ограниченности или непрерывности в каждом компакте из области определения дифференциального уравнения.

Решение задачи Коши при выполнении условий теоремы Пикара можно найти как предел при равномерно сходящейся последовательности функций , определяемых рекуррентным соотношением

. (2)

Оценка погрешности, получаемой при замене точного решения y(x) n- м приближением , выражается неравенством

.

Теорема Пеано. Пусть функция непрерывна в прямоугольнике , причем

.

Тогда задача Коши на промежутке имеет по крайне мере одно решение .

Система уравнений

в векторных обозначениях записывается в виде

, (3)

где и - векторы. Непрерывность вектор - функции f означает непрерывность всех функций , а вместо рассматривается матрица из частных производных .

Рассмотренные выше теоремы остаются справедливы и для системы, записанной в виде (3). При этом |y| означает длину вектора y: .

Рассмотрим уравнение вида

. (4)

Пусть в области D функция f и ее частные производные первого порядка по непрерывны, и точка лежит внутри D. Тогда при начальных условиях

уравнение (4) имеет единственное решение.

Уравнение (4) можно свести к системе вида (2), если ввести новые неизвестные функции по формулам . Тогда уравнение (4) сводится к системе

,

которая является частным случаем системы (3) и к которой применимы все рассмотренные утверждения.

Часто решение задачи Коши существует не только на отрезке, указанном в теоремах, но и на большем отрезке.

Если функция f(x,y) удовлетворяет в прямоугольнике условиям теоремы Пикара, то всякое ее решение можно продолжить до выхода на границу прямоугольника . Если функция f(x,y) в полосе непрерывна и удовлетворяет неравенству , где a(x) и b(x) - непрерывные функции, то всякое решение уравнения (1) и (3) можно продолжить на весь интервал .

Пример 1. Построить последовательные приближения к решению данного уравнения с данными начальными условиями: .

Решение.

Последовательные приближения к решению данной задачи определим по рекуррентной формуле

.

Подставляя в последнюю формулу поочередно n=0,1 найдем нужные приближения:

,

.

Пример 2. Указать какой-нибудь отрезок, на котором существует решение с данными начальными условиями: .

Решение.

Воспользуемся теоремой Пикара. В данном случае . Функция f непрерывна в любом прямоугольнике и удовлетворяет условию Липшица, поскольку производная ограничена числом . Следовательно, на сегменте , где

существует единственное решение данной задачи. Найдем число

.

Ясно, что если на каком - то сегменте I существует единственное решение, то оно существует и на меньшем сегменте, вложенном в I. Отсюда следует, что желательно найти как можно больший отрезок I, т.е.

.

Так как функция возрастает при , а функция убывает, то достигается при условии, что , т.е.

. (5)

Взяв производную по b от правой части (5), найдем, что при достигается максимум a, который легко вычислить, подставив значение в (5). Тогда получим

.

Таким образом, можно гарантировать существование и единственность решения данной задачи на сегменте .

Пример 3. При каких начальных условиях существует единственное решение уравнения .

Решение.

Поскольку функция

вместе с частными производными

непрерывна при и , то через каждую точку , где и , проходит единственная интегральная кривая уравнения

.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-04-14 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: