При обработки конструкций радиоэлектронной аппаратуры (РЭА), ее составных частей и деталей радиоконструктору необходимо оценить качество принятых конструкторско–технологических решений для выбора оптимального варианта или определения степени соответствия требованиям технического задания (ТЗ).
В процессе эксплуатации на несущие элементы конструкции РЭА, электроэлементы и узлы действуют различные механические силы. На стационарную РЭА действует, в основном, сила тяжести самой конструкции и ее составных частей. Аппаратура, устанавливаемая на подвижных объектах, а также стационарная РЭА во время транспортировки подвергается внешним механическим воздействиям: вибрациям (периодическим колебаниям) или ударам (кратковременно действующим силам).
В ТЗ на конструирование РЭА, как правило, регламентируется следующие параметры механических воздействий:
линейное ускорение а, м/c2, или перегрузка rп, g;
частота вибраций f, Гц, или полоса частот Δf, Гц;
амплитуда вибраций А, мм;
продолжительность вибраций Т, ч;
длительность ударного импульса tи, мс;
частота ударов в минуту,υ;
число ударов N.
Цель расчетов статистической, вибро– и ударопрочности конструкций – определить параметры механических напряжений в конструкциях РЭА в наихудших условиях и сопоставить их с предельно допустимыми.
Если из расчета выяснится, что прочность конструкции РЭА недостаточна, то конструктор принимает решение о вводе добавочных элементов крепления, ребер жесткости, отбортовок и других упрочняющих элементов или о применении для конструкций материалов с лучшими прочностными или демпфирующими свойствами.
Теория сопротивления материалов является основой для оценки статистической прочности конструкций РЭА.
|
Точная методика для расчета вибрационной и ударной прочности конструкций пока недостаточно разработана, поэтому обще принятым инженерным подходом является приведение динамических задач к статическим. При выполнении оценочных прочностных расчетов студенту следует придерживаться методики, содержащей несколько этапов:
1) выбор расчетных моделей конструкций РЭА и ее элементов;
2) определение нагрузок, испытываемых элементами конструкций: напряжений, растяжений σр, смятия σсм, среза tср ;
3) расчет допускаемых значений прочности элементов конструкций – напряжений растяжения [σ ]р, смятия [σ ]см, среза [ t ]ср;
4) сравнение расчетных показателей прочности с допускаемыми.
При оценочном расчете деталей конструкций на прочность принято считать, ели расчетные напряжения σ и t в опастных сечениях не превышают допустимых, то прочность конструкции соответствует требованиям ТЗ. Следовательно, условие обеспечение прочности выражается зависимостями:
σ ≤ [ σ ] или t ≤ [ t ]
В проектных расчетах параметры конструкций а или внешних воздействий φ, обеспечивающие требования прочности, определяются из соотношений:
а = f ([ σ ], [ t ]); Р = φ ([ σ ], [ t ]).
При расчете прочности конструкцию РЭА условно заменяют эквивалентной расчетной схемой, для которой известно аналитическое выражение основных колебаний f0. Основное условие замены состоит в том, чтобы расчетная схема наилучшим способом соответствовала реальной конструкции и имела минимальное число степеней свободы.
|
Наиболее часто применяются два вида моделей – балочное и пластинчатые.
К балочным моделям следует приводить элементы конструкций призматической формы, высота (толщена) которых мала по сравнению с длиной. Концы жестко защемлены, оперты или свободны.
К жесткому замещению приравнивают сварку, пайку и приклеивание, к опоре – винтовое закрепление.
В нижеприведенных формулах приведены виды и схемы балок при различных нагрузках и соответствующие им расчетные соотношения для определения максимального прогиба zmax, м; максимального изгибающего момента Мизг, Н·м и частоты собственных колебаний f0 Гц.Здесь e – модуль упругости материала, Па; I – момент инерции, м4; l – длина, м; М и m – масса блоков и балки, кг; Р – сила, Н.
Пластинчатые модели студенту следует использовать для тел призматической формы, высота (толщина) h которых мала по сравнению с размерами основания а, в. Крепление пластин жесткое, опертое или свободное. Жесткое закрепление (нет угловых и линейных перемещений): сварка, пайка, приклеивание, закрепление несколькими винтами. Шарнирная опора (нет линейного перемещения, но возможен поворот по опертой стороне): направляющие, закрепление 1–2 винтами или разъемом. Свободная сторона пластины допускает линейные и угловые перемещения.
Собственная частота пластины с распределенной нагрузкой, Гц:
(1.1)
где K a – коэффициент определяемый способом крепления пластины и соотношением ее сторон а, в;
D = 0,09Eh3 – жесткость платы, Н·м;
a, в, h – собственно длина, ширина, высота пластины, м;
m'' = m/ ав – распределенная по площади масса пластины, кг/м2.
Если в центре пластины сосредоточена масса М, а по площади распределена масса пластины m, целесообразно применять формулу:
(1.2)
Для пластины с числом точек крепления n = 4, 5, 6
(1.3)
где А = 1/а2 при n = 4; А = 4/(а 2+ в 2) при n = 5; А = 1/4а2 при n = 6.