III. Изображение пространственных фигур.




 

Есть такой афоризм «Геометрия — это искус­ство правильно рассуждать на неправильном чертеже». Действительно, если вернуться к из­ложенным выше рассуждениям, то окажется:

единственная польза, которую мы извлекли из сопровождавшего их рисунка куба, состоит в том, что он сэкономил нам место на объясне­нии обозначений. С тем же успехом можно было изобразить его, как тело на рис. 4, я, хотя, очевидно, представленное на нём «нечто» не только не куб, но и не многогранник. И всё же в приведённом афоризме заключена лишь часть правды. Ведь прежде, чем «рассуждать» — излагать готовое доказательство, надо его при­думать. А для этого нужно ясно представлять себе заданную фигуру, соотношения между её элементами. Выработать такое представление помогает хороший чертёж. Более того, как мы увидим, в стереометрии удачный чертёж мо­жет стать не просто иллюстрацией, а основой решения задачи.

а
Рис. 5
б
Художник (вернее, художник-реалист) на­рисует наш куб таким, каким мы его видим (рис. 5, б), т. е. в перспективе, или централь­ной проекции. При центральной проекции из точки О (центр проекции) на плоскость а про­извольная точка Х изображается точкой X', в которой а пересекается с прямой ОХ (рис. 6). Центральная проекция сохраняет прямоли­нейное расположение точек, но, как правило, переводит параллельные прямые в пересека­ющиеся, не говоря уже о том, что изменяет расстояния и углы. Изучение её свойств при­вело к появлению важного раздела геометрии (см. статью «Проективная геометрия»).

Рис. 6
Но в геометри-ческих чертежах исполь-зуется другая проекция. Можно сказать, что она получается из централь-ной когда центр О уда-ляется в бесконечность и прямые ОХ становятся па­раллельными.

Выберем плоскость а и пересекающую её прямую l. Проведём через точку Х прямую, па­раллельную l. Точка X', в которой эта прямая встречается с а, и есть параллельная проекция Х на плоскость, а вдоль прямой l (рис. 7). Про­екция фигуры состоит из проекций всех её точек. В геометрии под

α
D
C
B
A
l
Рис. 7
изображением фигуры понимают её параллельную проекцию.

В частности, изображение прямой линии — это прямая линия или (в исключительном слу­чае, когда прямая параллельна направлению проекции) точка. На изображении параллель­ные прямые так и остаются параллельными, сохраняется здесь и отношение длин парал­лельных отрезков, хотя сами длины и изменя­ются. Всё вышесказанное можно уложить в одну короткую формулировку основного свой­ства параллельной проекции:

· Если АВ =k CD, а A¹,B¹,C¹ и D¹- проекции точек A,B,C и D, то A¹B¹= k C¹D¹.

Черта здесь означает направленные отрезки (векторы), а равенство — совпадение не толь­ко длин, но и направлений (рис. 7). Таким об­разом, если задать изображения точек А и В, то будут однозначно определены и изображения всех точек Х прямой АВ, поскольку множитель k в равенстве AX = kAB на параллельной про­екции и оригинале одинаков. Аналогично, по изображениям трёх точек, не лежащих на од­ной прямой, однозначно восстанавливаются изображения всех точек проходящей через них плоскости, а задав изображения четырёх точек, не находящихся в одной плоскости, мы предопределяем изображения всех точек про­странства.

В то же время изображением данной трой­ки точек, т. е. треугольника, может служить тре­угольник любой заданной формы. В этом легко убедиться: проведём через сторону Поданного треугольника

Рис. 8
ЛВС любую плоскость а, постро­им в ней треу-гольник АВС нужной формы и спроектируем треугольник АВС на α вдоль пря­мой l = СС¹ (рис. 8). Взяв в качестве А В С равно­бедренный прямоу-гольный треугольник и до­строив его до квадрата ABCD, увидим, что в параллельной проекции квадрат легко превращае-тся в любой параллело-грамм. Более того, можно доказать, что изображе-нием любой данной треу-гольной пирамиды могуг быть лю­бые четыре точки, не лежащие на одной пря­мой, вместе с соединяющими их отрезками.

Правильно выбранное изображение помо­гает решать задачи. Найдём, например, отно­шения, в которых треугольное сечение A¹BD нашего куба (рис. 9, а) делит отрезок, соединяющий середины Р и Q рёбер AD и В¹С¹. По­смотрим на куб со стороны бокового ребра ВВ¹, а точнее говоря, спроектируем куб вдоль прямой BD па плоскость АА¹С¹С. Понятно,чтопроекцией будет сам прямоугольник АА¹С¹С с проведённым в нём отрезком, соединяющим середины оснований (точки В и D совпадут;

Р(=К’) B(=D)
М
А
А¹
С
С¹
B¹(=D¹) Q
Рис. 9
рис. 9, б); рассматриваемое сечение превра­тится в отрезок (рис. 9, б), а точки Р и Q станут серединами отрезковА1)и ВiCi. Очевидно, что на нашем рисунке A¹Q = 3PB, а значит, РМ: MQ = 1: 3. В силу основного свойства параллельной проекции,эторавенство верно и в пространстве. Та же про­екция позволяет найти отношение между ча­стями любого проведённого в кубе отрезка,накоторые он рассекается плоскостью A¹BD: в частности, отрезок KQ, где К — середина АВ. вновь делится ею в отношении 1: 3, а диаго­наль АС, — в отношении 1:2.

Ещё эффектнее решения планиметриче­ских задач, которые получают, «выходя в про­странство», т. е. представляя данную плоскую фигуру в виде изображения некоего пространственного объекта. Вот одна из таких задач, требуется построить треугольник с вершина­ми на трёх данных лучах ОА, 0В и ОС с общим началом О так, чтобы его стороны проходили через три данные внутри углов АОВ, ВОСк СОАточки Р, Q и R.

R
R
Рис. 10
E
M
Q
С
О
А
В
Р
Q
С
О
А
В
Р
Это очень трудная задача. Но если мы дога­даемся посмотреть на её чертёж (рис. 10, а) как на изображение трёхгранного угла с тремя точками на его гранях, то, конечно, поймем, что имеем дело с задачей на построение сечения этого угла плоскостью PQR. Решение задачи приводится на рис 10, б; кстати сказать, оно поясняет и основной прием построения сечений. Из произвольной точки Е луча ОС проектируем данные точки R и Q на плоскость ОАВ; получаем точки R¹ и Q¹. Плоскость искомого сечения пересекает плоскость ОАВ по прямой МР. Дальнейшее очевидно.

 
 

IV. Перпендикулярность. Углы. Расстояния.


До сих пор мы, по существу, нигде не пользовались такими важными геометрическими понятиями, как расстояния и углы. Даже в нашем кубе нам достаточно было только того, что его грани- параллелограммы, равенства всех их сторон и углов на самом деле не требовалось. Чтобы иметь возможность изучать свойства куба и других пространственных фигур во всей полноте, нужны соответствующие определения. Прежде всего, расширим понятие перпендикулярности, известное из планиметрии.

Если прямая пересекает плоскость в этой плоскости, проходящей через точку Р, то говорят, что данные прямая и плоскость перпендикулярны.

Например, ясно, что ребро АА¹ нашего куба перпендикулярно основанию АВСD. Но как проверить, что это ребро действительно перпендикулярно любой прямой, лежащей в основе и проходящей через А? Оказывается, достаточно того, что АА¹ составляет прямые углы с двумя из них – АВ и АD: согласно признаку перпендикулярности прямой и плоскости,

· Если прямая l перпендикулярна двум пересекающимся прямым a и b, то она перпендикулярна плоскости, содержащей a и b.

Причём здесь не обязательно предполагать, что прямые a и b пересекают l: считают, что скрещивающиеся прямые перпендикулярны, если перпендикулярны параллельные им пря­мые, проходящие через произвольно взятую точку, в частности через точку пересечения l с плоскостью. Так что теперь можно сказать, что прямая, перпендикулярная плоскости, перпен­дикулярна любой лежащей в этой плоскости прямой. Справедлива такая теорема:

· Через данную точку в пространстве можно провести одну и только одну плоскость, перпендикулярную дан­ной прямой, а также одну и только одну прямую, перпендикулярную данной плоскости.

Параллельная проекция на плоскость вдоль перпендикулярной ей прямой называется ортогональной (т. е. прямоугольной) проекцией на данную плоскость. Обычно, когда говорят просто «проекция», имеют в виду именно ор­тогональную проекцию. Она обладает всеми общими свойствами параллельной проекции. Но у неё есть и специфические свойства, их можно использовать при решении задач о расстояниях и углах в пространстве.

Из признака перпендикулярности прямой и плоскости выводится очень простая, но важная теорема о трёх перпендикулярах (рис. 11):

·

a
Наклонная a к плоскости перпендикулярна к прямой l в этой плоскости тогда, когда её проекция а¹ на плоскость перпендикулярна l.

Наклонной к плоскости называют любую пересекающую её, но не перпендикулярную ей прямую. Оба условия в этой теореме равно­сильны тому, что плоскость, содержащая а и а', перпендикулярна прямой /.

Применим обе теоремы к кубу (рис. 11). Проекция АС его диагонали АC¹ на основание перпендикулярна диагонали основания BD; по теореме о трёх перпендикулярах, и сама диаго­наль АС¹ перпендикулярна BD. По такой же причине перпендикулярны АС¹ и А¹В. Отсюда следует, что диагональ перпендикулярна «тре­угольному сечению» A¹BD.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: