Есть такой афоризм «Геометрия — это искусство правильно рассуждать на неправильном чертеже». Действительно, если вернуться к изложенным выше рассуждениям, то окажется:
единственная польза, которую мы извлекли из сопровождавшего их рисунка куба, состоит в том, что он сэкономил нам место на объяснении обозначений. С тем же успехом можно было изобразить его, как тело на рис. 4, я, хотя, очевидно, представленное на нём «нечто» не только не куб, но и не многогранник. И всё же в приведённом афоризме заключена лишь часть правды. Ведь прежде, чем «рассуждать» — излагать готовое доказательство, надо его придумать. А для этого нужно ясно представлять себе заданную фигуру, соотношения между её элементами. Выработать такое представление помогает хороший чертёж. Более того, как мы увидим, в стереометрии удачный чертёж может стать не просто иллюстрацией, а основой решения задачи.
Художник (вернее, художник-реалист) нарисует наш куб таким, каким мы его видим (рис. 5, б), т. е. в перспективе, или центральной проекции. При центральной проекции из точки О (центр проекции) на плоскость а произвольная точка Х изображается точкой X', в которой а пересекается с прямой ОХ (рис. 6). Центральная проекция сохраняет прямолинейное расположение точек, но, как правило, переводит параллельные прямые в пересекающиеся, не говоря уже о том, что изменяет расстояния и углы. Изучение её свойств привело к появлению важного раздела геометрии (см. статью «Проективная геометрия»).
Но в геометри-ческих чертежах исполь-зуется другая проекция. Можно сказать, что она получается из централь-ной когда центр О уда-ляется в бесконечность и прямые ОХ становятся параллельными.
Выберем плоскость а и пересекающую её прямую l. Проведём через точку Х прямую, параллельную l. Точка X', в которой эта прямая встречается с а, и есть параллельная проекция Х на плоскость, а вдоль прямой l (рис. 7). Проекция фигуры состоит из проекций всех её точек. В геометрии под
изображением фигуры понимают её параллельную проекцию.
В частности, изображение прямой линии — это прямая линия или (в исключительном случае, когда прямая параллельна направлению проекции) точка. На изображении параллельные прямые так и остаются параллельными, сохраняется здесь и отношение длин параллельных отрезков, хотя сами длины и изменяются. Всё вышесказанное можно уложить в одну короткую формулировку основного свойства параллельной проекции:
· Если АВ =k CD, а A¹,B¹,C¹ и D¹- проекции точек A,B,C и D, то A¹B¹= k C¹D¹.
Черта здесь означает направленные отрезки (векторы), а равенство — совпадение не только длин, но и направлений (рис. 7). Таким образом, если задать изображения точек А и В, то будут однозначно определены и изображения всех точек Х прямой АВ, поскольку множитель k в равенстве AX = kAB на параллельной проекции и оригинале одинаков. Аналогично, по изображениям трёх точек, не лежащих на одной прямой, однозначно восстанавливаются изображения всех точек проходящей через них плоскости, а задав изображения четырёх точек, не находящихся в одной плоскости, мы предопределяем изображения всех точек пространства.
В то же время изображением данной тройки точек, т. е. треугольника, может служить треугольник любой заданной формы. В этом легко убедиться: проведём через сторону Поданного треугольника
ЛВС любую плоскость а, построим в ней треу-гольник АВС нужной формы и спроектируем треугольник АВС на α вдоль прямой l = СС¹ (рис. 8). Взяв в качестве А В С равнобедренный прямоу-гольный треугольник и достроив его до квадрата ABCD, увидим, что в параллельной проекции квадрат легко превращае-тся в любой параллело-грамм. Более того, можно доказать, что изображе-нием любой данной треу-гольной пирамиды могуг быть любые четыре точки, не лежащие на одной прямой, вместе с соединяющими их отрезками.
Правильно выбранное изображение помогает решать задачи. Найдём, например, отношения, в которых треугольное сечение A¹BD нашего куба (рис. 9, а) делит отрезок, соединяющий середины Р и Q рёбер AD и В¹С¹. Посмотрим на куб со стороны бокового ребра ВВ¹, а точнее говоря, спроектируем куб вдоль прямой BD па плоскость АА¹С¹С. Понятно,чтопроекцией будет сам прямоугольник АА¹С¹С с проведённым в нём отрезком, соединяющим середины оснований (точки В и D совпадут;
рис. 9, б); рассматриваемое сечение превратится в отрезок (рис. 9, б), а точки Р и Q станут серединами отрезковА1)и ВiCi. Очевидно, что на нашем рисунке A¹Q = 3PB, а значит, РМ: MQ = 1: 3. В силу основного свойства параллельной проекции,эторавенство верно и в пространстве. Та же проекция позволяет найти отношение между частями любого проведённого в кубе отрезка,накоторые он рассекается плоскостью A¹BD: в частности, отрезок KQ, где К — середина АВ. вновь делится ею в отношении 1: 3, а диагональ АС, — в отношении 1:2.
Ещё эффектнее решения планиметрических задач, которые получают, «выходя в пространство», т. е. представляя данную плоскую фигуру в виде изображения некоего пространственного объекта. Вот одна из таких задач, требуется построить треугольник с вершинами на трёх данных лучах ОА, 0В и ОС с общим началом О так, чтобы его стороны проходили через три данные внутри углов АОВ, ВОСк СОАточки Р, Q и R.
Это очень трудная задача. Но если мы догадаемся посмотреть на её чертёж (рис. 10, а) как на изображение трёхгранного угла с тремя точками на его гранях, то, конечно, поймем, что имеем дело с задачей на построение сечения этого угла плоскостью PQR. Решение задачи приводится на рис 10, б; кстати сказать, оно поясняет и основной прием построения сечений. Из произвольной точки Е луча ОС проектируем данные точки R и Q на плоскость ОАВ; получаем точки R¹ и Q¹. Плоскость искомого сечения пересекает плоскость ОАВ по прямой МР. Дальнейшее очевидно.
IV. Перпендикулярность. Углы. Расстояния.
До сих пор мы, по существу, нигде не пользовались такими важными геометрическими понятиями, как расстояния и углы. Даже в нашем кубе нам достаточно было только того, что его грани- параллелограммы, равенства всех их сторон и углов на самом деле не требовалось. Чтобы иметь возможность изучать свойства куба и других пространственных фигур во всей полноте, нужны соответствующие определения. Прежде всего, расширим понятие перпендикулярности, известное из планиметрии.
Если прямая пересекает плоскость в этой плоскости, проходящей через точку Р, то говорят, что данные прямая и плоскость перпендикулярны.
Например, ясно, что ребро АА¹ нашего куба перпендикулярно основанию АВСD. Но как проверить, что это ребро действительно перпендикулярно любой прямой, лежащей в основе и проходящей через А? Оказывается, достаточно того, что АА¹ составляет прямые углы с двумя из них – АВ и АD: согласно признаку перпендикулярности прямой и плоскости,
· Если прямая l перпендикулярна двум пересекающимся прямым a и b, то она перпендикулярна плоскости, содержащей a и b.
Причём здесь не обязательно предполагать, что прямые a и b пересекают l: считают, что скрещивающиеся прямые перпендикулярны, если перпендикулярны параллельные им прямые, проходящие через произвольно взятую точку, в частности через точку пересечения l с плоскостью. Так что теперь можно сказать, что прямая, перпендикулярная плоскости, перпендикулярна любой лежащей в этой плоскости прямой. Справедлива такая теорема:
· Через данную точку в пространстве можно провести одну и только одну плоскость, перпендикулярную данной прямой, а также одну и только одну прямую, перпендикулярную данной плоскости.
Параллельная проекция на плоскость вдоль перпендикулярной ей прямой называется ортогональной (т. е. прямоугольной) проекцией на данную плоскость. Обычно, когда говорят просто «проекция», имеют в виду именно ортогональную проекцию. Она обладает всеми общими свойствами параллельной проекции. Но у неё есть и специфические свойства, их можно использовать при решении задач о расстояниях и углах в пространстве.
Из признака перпендикулярности прямой и плоскости выводится очень простая, но важная теорема о трёх перпендикулярах (рис. 11):
·
Наклонная a к плоскости перпендикулярна к прямой l в этой плоскости тогда, когда её проекция а¹ на плоскость перпендикулярна l.
Наклонной к плоскости называют любую пересекающую её, но не перпендикулярную ей прямую. Оба условия в этой теореме равносильны тому, что плоскость, содержащая а и а', перпендикулярна прямой /.
Применим обе теоремы к кубу (рис. 11). Проекция АС его диагонали АC¹ на основание перпендикулярна диагонали основания BD; по теореме о трёх перпендикулярах, и сама диагональ АС¹ перпендикулярна BD. По такой же причине перпендикулярны АС¹ и А¹В. Отсюда следует, что диагональ перпендикулярна «треугольному сечению» A¹BD.