17.3.1. В состав установок для местной термической обработки сварных соединений труб входят источник питания (нагрева), собственно нагреватель, устройство для контроля температуры и режима нагрева стыка, соединительные кабели и провода (при электронагреве) или шланги (при газопламенном нагреве).
17.3.2. Для индукционного нагрева токами частотой 50 Гц в качестве источников питания используются трансформаторы с падающей и жесткой характеристиками.
17.3.3. Для индукционного нагрева током средней частоты используются установки, в которых в качестве источников питания могут применяться преобразователи, технические данные которых приведены в приложении 14 (табл. П14.2, П14.3), а также другие преобразователи, отвечающие предъявляемым к ним требованиям. Для электронагревателей сопротивления должны быть использованы сварочные трансформаторы (прил. 14, табл. П14.1), а при их отсутствии — сварочные преобразователи и выпрямители.
Рис. 17.1. Схема многоканальной (многопостовой) системы термообработки сварных соединений током средней частоты:
1 — пульт управления; 2 — шкаф запуска; 3 — кабель питания током частотой 50 Гц;
4 — источник питания; 5 — силовая сборка; 6 — кабель питания током средней частоты;
7 — переносные постовые устройства; 8 — граница сборочной площадки;
9 — стационарные постовые устройства; 10 — щиток термоэлектродной разводки;
11 — провод термоэлектродной разводки; 12 — кабель управления
17.3.4. Для питания многоканальной системы термообработки сварных соединений током средней частоты (рис. 17.1) используется машинный преобразователь ВПЧ. От источника питания 4 идет кольцевая кабельная разводка 6. На равных расстояниях одно от другого к ней подключены стационарные постовые устройства 9, к которым присоединены переносные постовые устройства 7, связанные с индукционными нагревателями. Управление индукционными нагревателями осуществляется через стационарные и переносные постовые устройства с пультом управления 1, на который, поступает информация о процессе нагрева от датчиков температуры (термоэлектрических преобразователей), установленных на стыках.
|
Многоканальная система дает возможность одновременно вести термообработку нескольких стыков различных размеров на разных режимах в радиусе обслуживания от одного источника питания до 800 м. Пульт управления, размещенный в кабине, может быть выполнен на трех или шести каналах (в зависимости от числа постовых устройств). Для каждого постового устройства устанавливается программа, обеспечивающая нагрев стыка по заданному режиму. Пульт управления позволяет автоматически управлять процессом термообработки, обеспечивает контроль за электрическими и температурными параметрами нагрева, пуск и остановку источника питания.
17.3.5. Для компенсации реактивной мощности при термообработке токами средней частоты используются конденсаторы. Технические данные конденсаторов и схемы подключения их приведены в приложении 15.
17.3.6. Для присоединения индукционного и радиационного электронагревателей к источнику питания с током частотой 50 Гц необходимо применять провода и кабели ПС (ТУ
16-505.657-74), КРПТ (ТУ 16.К73.05-93), КОГ1 и КОГ2 (ТУ 16.К73.03-88), КГ (ТУ 16.К73.05-
93), сечение которых следует выбирать по рабочему току нагревателя:
|
Допустимая токовая нагрузка, А
Сечение провода
(кабеля), мм2
80 100 140 170 215 270 330 385 440 510 605 695
10 16 25 35 50 70 95 120 150 185 240 300
17.3.7. Для присоединения индуктора к конденсаторной батарее и разводке тока средней частоты (2400 и 8000 Гц) применяется кабель КРПТ; сечение кабеля подбирается по данным табл. 17.2.
Таблица 17.2
Данные для подбора сечения кабеля КРПТ для присоединения индуктора к конденсаторной батарее и разводке тока средней частоты
Допустимая токовая нагрузка, А, при частоте | Число и сечение жил, мм2 | Допустимая токовая нагрузка, А, при частоте | Число и сечение* жил, мм2 | |||
2400 Гц | 8000 Гц | Гц | 8000 Гц | |||
2х50 2х70 2х95 2х120 3х95 3х50 | 3х70 3х95 3х120 3х120 3х120 3х120 |
* Указано общее сечение кабеля (к обоим выводам нагревателя или конденсатора).
17.3.8. Основными теплоизоляционными материалами при индукционном нагреве являются асбестовые и асбостеклянные ткани, вспомогательными — асбестовый картон и шнур, при нагреве элементами сопротивления — соответственно теплоизоляционные маты и асбестовые ткани или картон. Теплоизоляционные маты изготавливаются толщиной 50 мм из кремнеземной ткани КТ-11 с набивкой из каолинового рулонного материала ВКР-150 или ваты ВК-200. Маты прошиваются кремнеземной нитью К11С6. Для крепления теплоизоляционных матов на нагревателях и трубах применяется лента толщиной 0,5—1 мм из жаропрочной стали. Для повышения долговечности матов рекомендуется до их установки обернуть электронагреватели и
трубу одним слоем асбестовой ткани. Если маты отсутствуют, то можно использовать асбестовую ткань или асбестовый картон, при этом толщина изоляции должна быть не менее
|
50мм.
Характеристики теплоизоляционных материалов приведены в приложении 16.
Нагревательные устройства
17.3.9. В качестве индукционных нагревателей применяются гибкие неохлаждаемые (естественно охлаждаемые) индукторы, которые наматываются на трубу в виде одной или двух последовательно соединенных секций. Гибкий неохлаждаемый индуктор выполняется из многожильного медного провода сечением 35—240 мм2 марок М (жилы диаметром 2,51—3,15 мм), МГ (жилы диаметром 0,58—0,85 мм) или МГЭ (жилы диаметром 0,73 мм), наматываемого на предварительно изолированную тепловой изоляцией наружную поверхность трубы. Индуктор при питании током средней частоты перед намоткой на трубу должен быть изолирован по всей длине термостойким материалом (лентой, чехлом), исключающим возможность поражения током обслуживающего персонала.
Технические данные неизолированных гибких проводов для индукторов приведены в приложении 17. Пример двухсекционного гибкого индуктора представлен на рис. 17.2.
Рис. 17.2. Двухсекционный гибкий индуктор:
1 — труба; 2, 3 — секции индуктора; 4 — ось сварного стыка;
ИП — источник питания
17.3.10. Фирма «Унитех» изготавливает водоохлаждаемые кабели для индукционного нагрева труб, включающие гибкий кабель ВГИК, являющийся индуктором, и два токоподвода (ВИТ и МТК) (рис. 17.3). Кабель ВГИК представляет собой гофрированную гибкую трубку диаметром
25—30 мм из нержавеющей стали или латуни толщиной 0,2—0,3 мм, помещенную в медную оплетку, являющуюся основной токопроводящей частью кабеля. Снаружи кабель изолирован термостойкой резиной, стеклотканевым и асботканевым чехлом. Кабель ВГИК выпускается нескольких модификаций в зависимости от величины и частоты рабочего тока (на ток 800, 1000 и 1200 А частотой от 50 Гц до 10 кГц).
С помощью ВГИК можно производить нагрев труб любого диаметра и толщины стенки до температуры 1200 °С.
В качестве источника питания следует использовать источники тока средней частоты (ВПЧ, ППЧВ, СЧИ и др.).
Техническая характеристика водоохлаждаемых кабелей для индукционных установок приведена в приложении 18.
17.3.11. Гибкие пальцевые электронагреватели типа ГЭН (рис. 17.4) относятся к нагревателям радиационного действия и используются для предварительного подогрева и термообработки сварных соединений труб и других деталей толщиной до 50 мм.
Рис. 17.3. Водоохлаждаемые гибкие индукционные кабели
ВГИК, ВИТ и МТК и схема их подключения
Нагревательный элемент* состоит из двух проволок марки Х20Н80 диаметром 3,6 мм, изогнутых в виде «пальцев». В целом нагреватель представляет гибкую секцию, которую можно установить вокруг трубы. Каждый «палец» защищен набором керамических изоляторов. Длина пальца, характеризующая ширину панели, составляет 100 мм. Посередине секции укреплена лента из жаропрочной стали, с помощью которой нагреватель крепится на трубе.
* В качестве нагревательных элементов в нагревателях радиационного и комбинированного действия применяются лента и проволока из прецизионных сплавов, характеристика которых приведена в приложении 19.
Число пальцев в секции зависит от диаметра трубы, для которой предназначен нагреватель. Так, для трубы диаметром 108 мм нагреватель состоит из 13 пальцев, для трубы диаметром 325 мм — из 34 пальцев.
Нагрев осуществляется поясом, представляющим собой одну или несколько последовательно расположенных секций ГЭН, суммарная длина которых равняется длине окружности L термообрабатываемого сварного соединения.
При диаметре трубы до 325 мм пояс состоит из одной секции с максимальным числом пальцев в секции 34. Необходимое число поясов ГЭН зависит от толщины стенки трубы и ширины зоны равномерного нагрева.
Максимальная температура нагрева трубы с помощью ГЭН — 1000 °С. Нагреватель позволяет производить не более 25 нагревов до 750 °С.
В качестве источника питания могут быть использованы сварочные трансформаторы, а при их отсутствии — сварочные источники постоянного тока, обеспечивающие достаточную электрическую мощность (см. приложение 14, табл. П14.1).
Техническая характеристика нагревателей типа ГЭН приведена в приложении 20 (табл. П20.1).
Рис. 17.4. Гибкий пальцевый электронагреватель сопротивления ГЭН:
1 — контактная втулка; 2 — шпилька; 3—6 — втулки-изоляторы;
7 — ограничитель; 8 — нагревательный элемент; 9 — скоба для крепления пояса;
10 — пояс для крепления электронагревателя на трубе
17.3.12. Гибкий радиационный электронагреватель (ГРЭН) (рис. 17.5) конструкции НПО ЦНИИТМАШ, технические данные которого приведены в приложении 20 (табл. П20.2), представляет собой плоскую гибкую панель, в которую вмонтированы нагревательные элементы из проволоки Х20Н80-Н или Х23Ю5Т диаметром 3,2 мм. Проволока помещена в керамические изоляторы с окнами; благодаря этим окнам обеспечивается более эффективный нагрев трубы.
Нагреватель набирается из такого числа элементов, чтобы его длина L равнялась длине окружности нагреваемой трубы, а число нагревательных секций (поясов) выбирается в зависимости от требуемой ширины зоны равномерного нагрева, рассчитанной в соответствии с рекомендацией п. 17.4.1.
Источником питания током может служить сварочный трансформатор или сварочный источник постоянного тока.
Максимальная температура нагрева трубы 1150 °С.
Нагреватели ГРЭН комплектуются программным блоком управления термопроцессом (БУТ), обеспечивающим измерение и регулирование температуры нагрева трубы по заданной программе. Схема подключения нагревателя ГРЭН к источнику питания приведена на рис. 17.6. Технические характеристики программного блока управления термопроцессом приведены в приложении 21.
17.3.13. Нагреватели типа КЭН (комбинированные электронагреватели) представляют собой сердечник из нихромовых проволок диаметром 3,6 мм (от 1 до 6 проволок), помещенный в керамические втулки. Небольшие размеры втулок придают нагревателю гибкость, позволяющую намотать его на трубу в виде соленоида. Пропуская через нагреватель постоянный ток, нагревательный элемент выполняет функцию радиационного излучателя тепла, если же нагреватель подключают к источнику переменного тока, то он, кроме того, является индуктором, нагревающим трубу индуцированным током.
Рис. 17.5. Гибкий радиационный электронагреватель ГРЭН:
1 — нагревательный элемент; 2, 4, 6 — изоляторы;
3 — замок-изолятор; 5 — пробка-фиксатор
Технические данные нагревателей типа КЭН приведены в приложении 20 (табл. П20.3).
Рис. 17.6. Схема подключения нагревателя ГРЭН к источнику питания:
1 — сварочный преобразователь; 2 — программный блок управления термопроцессом (БУТ);
3 — секции ГРЭН; 4 — термоэлектрический преобразователь; 5 — трубопровод;
6 — теплоизоляционный мат