Тепловые энергетические характеристики турбоагрегатов




Расход пара и паровая характеристика служат лишь первым приближением для оценки экономичности турбоагрегата при различных нагрузках. Обычно, для расчета технико-экономических показателей, используют тепловые характеристики, которые можно получить из паровых, если известна зависимость температуры питательной воды от нагрузки.

Расход тепла на конденсационную установку определяется из выражения:

Qту= Do. DH, (7.8)

где DH = hо- hпв-расход тепла на 1 кг пара, для турбины без промперегрева;

DH = hо- hпв+ aпп (h"- h')-для турбин с промперегревом;

Здесь aпп- доля пара, идущего на промперегрев;

hо, hпв, h",h' - энтальпии свежего пара, питательной воды, горячего и холодного промперегрева.

Исходя из формул для расхода пара, можно получить следующие соотношения для расхода тепла на турбоагрегат:

Qту= Dx. DH + r . DHN, (7.9)

Обозначив

Qх= Dx. DH; rQ=r . DH,

получим

Qту= Qx+ rQ. N. (7.10)

Для нагрузок выше экономической можно представить обобщенную тепловую характеристику аналогично обобщенной паровой характеристике

Qту= Qx+ rQNэк + r'Q(N - Nэк), (7.11)

Здесь r'Q- удельный прирост расхода теплоты при нагрузках N > Nэ.

Мерой тепловой экономичности турбоагрегата наряду с КПД служит удельный расход тепла кДж/(кВтч) на выработку электроэнергии:

qту= . (7.12)

Удельный расход тепла для обобщенной характеристики с изломом может быть представлен следующим выражением:

qту=(Qx/N) +rQ+(r'Q-rQ)(N-Nэк)/N. (7.13)

Анализ этого выражения показывает, что точка излома не всегда указывает на экономическую нагрузку, так как доля первого слагаемого уменьшается с ростом нагрузки, второе остается неизменным, а третье увеличивается. При этом возникают три возможных варианта:

1) Первое слагаемое уменьшается с такой же скоростью, как и возрастает третий член выражения (7.13). Это возможно только в том случае, когда проведенная из начала координат через точку излома прямая, сливается с участком характеристики выше излома. В этом случае величина qту=const и остается постоянной для всех N > Nэ(рис. 7.3А). КПД на этом участке остается постоянным;

2) В другом случае, представленном на рис. 7.3Б, первое слагаемое Qх/N убывает с ростом нагрузки быстрее, чем растет третий член выражения (7.13). Продолжение участка характеристики после излома в начало координат до пересечения с осью ординат дает положительный участок. В этом случае удельный расход тепла продолжает снижаться, а КПД расти. Следовательно, нагрузка Nэк не является экономической в этом случае;

3) В третьем случае, представленном на рис. 7.3В, первое слагаемое Qх/N убывает медленнее, чем растет третье слагаемое. Продолжение участка характеристики после излома в начале координат до пересечения с осью ординат отсекает на оси ординат отрицательный участок. В этом случае удельный расход начинает после Nэк возрастать, а КПД снижается по кривым, представленным на рис.7.3В.

Так как современные турбины работают с регенеративным подогревом питательной воды и конденсата, следует учитывать влияние регенеративного подогрева при построении характеристик. При этом необходимо учитывать изменение температуры регенеративного подогрева питательной воды с изменением нагрузки.

 

 

А)

 

 

Б)

 

В)

Рис.7.3. Типовые энергетические характеристики конденсационных турбоагрегатов.

 

Приведенные на рис. 7.1 паровые характеристики близки к характеристикам турбин с дроссельным регулированием в сочетании с байпасным (обводным) регулированием при больших нагрузках.

При наиболее часто применяемом сопловом парораспределении (регулировании) при мощностях, соответствующих полному открытию части клапанов, характеристики имеют излом, и вся характеристика принимает волнообразный вид (см. штриховую линию на рис. 7.1). Расходы пара и тепла после точек излома вначале быстро возрастают из-за потерь дросселирования при открытии очередного клапана; затем, по мере его открытия, потери дросселирования снижаются и рост расходов пара и тепла замедляется.

При сопловом парораспределении расходную характеристику изображают приближенно ломаной прямой, с точками излома при нагрузках, отвечающих полному открытию первого, второго, третьего и т. д. регулирующих клапанов.

В качестве примера реальных характеристик конденсационной турбоустановки на рис. 7.4 показаны графики изменения расходов пара do и тепла Qо, а также удельного расхода тепла в зависимости от нагрузки турбоагрегата К-210-130

 

 

Рис.7.4. Типовая энергетическая характеристика энергоблока К-210-130

В верхней части графика приведены условия получения данной характеристики. При отклонении тех или иных параметров от указанной величины, необходимо ввести поправку на величину отклонения. Наиболее часто используются поправки на отклонение вакуума в конденсаторе, а также параметров острого пара или пара промперегрева.

Пример поправки на отклонения расхода пара в голову турбины на отклонение вакуума в конденсаторе приведен на рис. 7.5.

Рис. 7.5. Поправка на отклонение вакуума. Турбина К-210-130 ЛМЗ.

 

При использовании поправки, находят фактическое давление в конденсаторе, поднимаются вверх до уровня соответствующего мощности турбины и находят на оси ординат значение поправки. αQо.

В этом случае реальный расход тепла на турбину будет равен значению Qо, найденному по характеристике (рис.7.4) плюс дополнительная составляющая от поправки на вакуум (рис.7.5).

Qорасч=Qо+ αQо.. (7.14)

Значение поправки подставляется со своим знаком. В результате можем получить как увеличение Qорасч при ухудшении вакуума, так и уменьшение, при повышении вакуума.

В условиях эксплуатации чаще используется не характеристика теплоты, а характеристики удельного расхода топлива. На рис. 7.6 приведен пример такой характеристики изменения удельного расхода топлива для газомазутного блока с турбиной К-210-130 ЛМЗ. На рис. 7.6 следует обратить внимание на точку перегиба характеристики. Такой перегиб связан с включением в работу вторых дутьевых вентиляторов и дымососов (или с переходом на более высокую скорость, для двухскоростных двигателей приводов), в результате доля собственных нужд скачкообразно увеличивается, что и приводит к излому характеристики.

 

Рис. 7.6. Изменение удельного расхода топлива на отпуск электроэнергии для энергоблока К-210-130



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: