Аллелофонд. Аллелофонд популяции.




Аллелофонд популяции – это совокупность аллелей в популяции. Если рассматриваются два аллеля одного гена: А и а, то структурааллелофонда описывается уравнением: pA + qa = 1. В этом уравнении символом pA обозначается относительная частота аллеля А, символом qaотносительная частота аллеля а.

Популяции, в которых структура аллелофонда остается относительно постоянной в течение длительного времени, называются стационарными.

Если рассматриваются три аллеля одного гена: а 1, а 2,, а 3, то структурааллелофонда описывается уравнением: p а 1 + q а 2 + r а 3= 1. В этом уравнении символами p, q, r обозначаются соответствующие частоты аллелей.

Если рассматриваются несколько аллелей нескольких генов (a, b, c), то структура аллелофонда описывается системой уравнений:

p 1 a 1 + p 2 a 2 + p 3 a 3 +... + pi ai = 1

q 1 b 1 + q 2 b 2 + q 3 b 3 +... + qi bi = 1

r 1 c 1 + r 2 c 2 + r 3 c 3 +... + ri ci = 1

.......................................................

В этих уравнениях символами pi, qi, ri обозначены относительные частоты аллелей разных генов. Однако в простейших случаях рассматриваются только моногенные диаллельные системы, например: А–а. В популяции с общей численностью особей N общ и известной численностью особей с генотипами АА, Аа, аа относительные частоты аллелей рассчитываются по формулам:

 

p (A) = 2 Í N (AA) + N (Aa)
2 Í N общ.

 

q (a) = 2 Í N (aa) + N (Aa)
2 Í N общ.

 

или q (a) = 1 – р (А)  
 

3-тема: Генетика человека. 1. Понятие о генетике человека. Генетика человека и такие фундаментальные дисциплины, как анатомия, физиология, биохимия, составляют основу современной медицины. Место генетики среди биологических наук и особый интерес к ней определяются тем, что она изучает основные свойства организмов, а именно наследственность и изменчивость.

Наследственность и изменчивость у человека являются предметом изучения генетики человека на всех уровнях его организации: молекулярном, клеточном, организменном, популяционном. Генетика человека своими успехами в значительной мере обязана медицинской генетике - науке, изучающей роль наследственности в патологии человека. Прикладной раздел медицинской генетики - это клиническая генетика, которая использует достижения медицинской генетики, генетики человека и общей генетики в решении клинических проблем, возникающих у людей.

Генетика представляет собой одну из наиболее сложных дисциплин современного естествознания. Чтобы разобраться в ней глубоко, в своей работе я рассмотрю основные этапы развития генетики, виды генетики, достижения генетики в современной медицине и т.д. Генетика – это наука, изучающая закономерности наследственности и изменчивости, а также обеспечивающие их биологические механизмы.

Первый научный шаг в изучении наследственности был сделан австрийским монахом Грегором Менделем, который в 1866 г. опубликовал статью «Опыты над растительными гибридами», заложившую основы современной генетики.

До открытий Менделя признавалась теория так называемой слитной наследственности. Суть этой теории состояла в том, что при оплодотворении мужское и женское «начало» перемешивались, «как краски в стакане воды», давая начало новому организму. Мендель показал, что наследственные задатки не смешиваются, а передаются от родителей потомкам в виде дискретных (обособленных) единиц. Эти единицы, представленные у особей парами (аллелями), остаются дискретными и передаются последующим поколениям в мужских и женских гаметах, каждая из которых содержит по одной единице из каждой пары. В 1909 г. датский ботаник-селекционер В. Иогансен назвал их «генами», а в 1912 г. американский генетик Т. Г. Морган показал, что они находятся в хромосомах.

Официальной датой рождения генетики считают 1900 год. Тогда были опубликованы данные Г. де Фриза, К. Корренса и К.Чермака, переоткрывших закономерности наследования признаков, установленные Г.Менделем. Первые десятилетия 20-го века оказались плодотворными в развитии основных положений и направлений генетики. Было сформулировано представление о мутациях, популяциях и чистых линиях организмов, хромосомная теория наследственности, открыт закон гомологических рядов, получены данные о возникновении наследственных изменений под действием рентгеновских лучей, была начата разработка основ генетики популяций организмов.

В 1953 году в международном научном журнале была напечатана статья биологов Джеймса Уотсона и Френсиса Крика о строении дезоксирибонуклеиновой кислоты – ДНК.

Структура ДНК оказалась совершенно необычной: её молекулы имеют огромную по молекулярным масштабам длину и состоят из двух нитей, сплетённых между собой в двойную спираль. Каждую из нитей можно сравнить с длинной нитью бус. У белков "бусинами" являются аминокислоты двадцати различных типов. У ДНК – всего четыре типа "бусин", и зовутся они нуклеотидами. "Бусины" двух нитей двойной спирали ДНК связаны между собой и строго друг другу соответствуют. В ДНК напротив нуклеотида аденина находится тимин, напротив цитозина – гуанин. При таком построении двойной спирали каждая из цепей содержит сведения о строении другой. Зная строение одной цепи, всегда можно восстановить другую.

Получаются две двойные спирали – точные копии их предшественницы. Это свойство точно копировать себя имеет ключевое значение для жизни на Земле.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: