Компоненты алгебраической группы




 

Пусть --- алгебраическая группа матриц. Невырожденные части компонент её подлежащего многообразия называеются компонентами группы . наличие в групповой структуры позволяет высказать о компонентах ряд важных утверждений, отсутствующих в случае произвольного многообразия.

 

1.3.1 Теорема. Пусть --- алгебраическая группа матриц. Её компонента , содержащая единицу, единственна и является нормальной подгруппой. Остальные компоненты --- смежные классы по (в частности, они являются связными компонентами группы в полиномиальной топологии). --- единственная связная замкнутая подгруппа конечного индекса в . Аннулятор компоненты связан с аннулятором всей группы следующим образом:

для некоторого , зависящего от

, где --- аннулятор единицы в , --- некоторый многочлен из .

Доказательство. а) Пусть --- общее поле определения всех компонент группы . Пусть , содержат единицу , , --- их независимые общие точки над и , . Имеем специализации

 

 

над , откуда , , . Этим доказана единственность компоненты .

б) Очевидно, что отображения

 

 

являются гомеоморфизмами пространства . Так как инвариантна относительно них, то --- нормальная подгруппа группы .

в) Пусть . Тогда при фиксированном --- снова все компоненты группы . В частности, , . Этим доказано, что --- смежные классы по и, значит, связные компоненты группы .

г) Если --- связная замкнутая подгруппа группы , то, предыдущему, . Если, кроме того, конечного индекса, то она той же размерности, что и , потому совпадает с .

д) Для каждого возьмем многочлен

 

 

Пусть --- точка из , в которой . Рассмотрим многочлен

 

 

Он искомый. В самом деле, очевидно, . Оба включения справа налево очевидны (использовать простоту идеала ). Остается доказать включение

 

 

Пусть , . Имеем:

 

 

Если , то , если же , , то . В любом случае . Следовательно, . Теорема доказана.

Мы видим, в частности, что для алгебраической группы неприводимость и связность в полиномиальной топологии --- одно и то же; в дальнейшем мы будем пользоваться только вторым термином, чтобы избежать путаницы с понятием матричной приводимости групп (к полураспавшейся форме).

Доказать, что связанная компонента единицы алгебраической группы содержится в любой замкнутой подгруппе конечного индекса.

Подгруппа алгебраической группы тогда и только тогда замкнута, когда замкнуто её пересечение со связной компонентой единицы .

<<Только тогда>> очевидно. <<Тогда>> вытекает из 9.1.9, если заметить, что

 

 

Конечная нормальная подгруппа связной алгебраической группы всегда лежит в центре .

 

 

В заключение отметим, что если в качестве универсальной области выбрано поле комплексных чисел , то в алгебраической группе можно рассматривать две топологии --- полиномиальную и евклидову. Ясно, что вторая тоньше первой, поэтому, в частности, евклидова связная компонента единицы содержится в полиномиальной связной компоненте. Можно было бы доказать и обратное, т. е. на самом деле связные компоненты комплексной алгебраической группы в обеих топологиях одни и те же. Этот результат становится неверным, если рассматривать -порцию комплексной алгебраической группы (по поводу определения см. следующий пункт).

 

1.4. О -группах

 

Пусть - поле. По определению, алгебраическая -группа --- это группа матриц из , выделяемая полиномиальными уравнениями с коэффициентами в . Иначе можно сказать, что это -порция, т. е. пересечение с , некоторой алгебраической группы, квазиопределенной над . Обычные алгебраические группы тоже можно трактовать как -группы по отношению к некоторой большей универсальной области . В этом смысле понятие алгебраической -группы является более общим, так как от не требуется ни алгебраической замкнутости, ни бесконечной степени трансцендентности над простым полем.

В свойствах алгебраических групп и -групп много общего. Имеется сандартный способ перехода от первых ко вторым --- посредством поля определения (в чём и состоит основное значение этого понятия). Нам не раз представится возможность продемонстрировать этот способ. В целом же -группы в нашем изложении останутся на заднем плане, лишь иногда выходя на авансцену.

Многие результаты о -группах по формулировке и доказательству вполне аналогичны результатам об абсолютных алгебраических группах (в ) и опираются на сведения из алгебраической геометрии для -множеств, (по определению, алгебраическое -множество выделяется в уравнениями с коэффициентами из ).

 


Ранг матрицы

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: