Как производится аммиачная селитра




Переработка полимеров

 

 

Важнейшая особенность новых материалов получаемых на основе различных полимеров,— сравнительная простота их превращения в готовые изделия в стадии вязкотекучего состояния, в которой наиболее резко проявляются их пластические свойства. Эта способность легко формироваться (в определенных условиях, так или иначе связанных с нагревом), а затем при обыкновенной температуре стойко сохранять приобретенную форму и дала пластическим массам их название.

С точки зрения переработки полимеров их можно (впрочем, весьма условно) разделить на две основные группы: термопласты, к которым относятся материалы, меняющие под влиянием нагревания только свою пластичность, но сохраняющие структуру, и термореактивные пластики, в которых под действием нагревания линейные молекулы как бы сшиваются, образуя сложные пространственные конструкции.

Природный полимер—янтарь. Смолка сохранила очертания насекомого, которому, вероятно, сотни тысяч лет.

К термопластам относятся почти все пластические массы, которые получаются сращиванием мономеров в длинные цепочки методом полимеризации. Назовем некоторые распространенные пластические массы этого рода. Среди них выделяется полиэтилен, или политен, который недаром именуют «королем пластиков». Если не считать пористых и пенообразных пластиков, политен — самая легкая пластическая масса. Его удельный вес мало отличается от удельного веса льда, что позволяет ему плавать на поверхности воды. Он исключительно стоек по отношению к щелочам и едким кислотам и при этом прочен, легко сгибается, не теряет гибкости даже при шестидесятиградусном морозе. Политен поддается сверлению, обточке, штамповке, — словом, любым видам обработки на тех станках, которые применяются для обработки металла. Нагретый до 115-120°, политен становится мягким и пластичным, и тогда прессованием или литьем под давлением из него можно изготовлять любых видов посуду — от флаконов для духов до огромных бутылей для кислот и щелочей. В нагретом виде политен легко поддается раскатке, в тонкие пленки, которые служат для завертывания продуктов, боящихся сырости. Сочетание прочности и упругости делает политен удобным материалом для изготовления бесшумных шестерен, вентиляционного оборудования и труб для химических заводов, клапанов, прокладок.

К распространенным термопластам относится также и поливинилхлорид (часто его не совсем правильно называют полихлорвинилом). На его основе изготовляются два основных вида пластических масс: жесткие целлулоидоподобного типа — так называемые винипласты и мягкие пластикаты.

Сюда же примыкают полистирол — ценный изолятор для высокочастотных устройств и специальной радиоаппаратуры, — напоминающий по внешнему виду бесцветное стекло, и полиметилметакрилат (органическое стекло).

К термопластам относятся пластические массы, изготовляемые из соответствующим образом переработанных природных полимеров (например, нитроцеллюлоза, получаемая обработкой хлопковой целлюлозы смесью азотной и серной кислот, и ацетилцеллюлоза), и, в виде исключения, полиамидные смолы, получаемые способом поликонденсации и так называемой «ступенчатой», или многократной, полимеризации.

Молекулы большинства полимеров — очень длинные, тонкие и гибкие цепи атомов. Ценные свойства полимеров связаны с этими особенностями молекулярного строения. На рисунке — схемы молекул мономера (1), полимеров (2,3),-цепи атомов которых легко вытягиваются и перемещаются друг относительно друга (2) или вытягиваются в прочные ориентированные нити (3), схема пространственных молекул, сшитых отдельными мостиками и образующих твердые пластмассы (4).

Разница между этими основными группами материалов весьма значительна. Изделия из термопластов можно раздробить и вновь переработать. Для изготовления из них тех или иных изделий широко применяется литье под давлением. Изделие затвердевает в охлаждаемой пресс-форме в несколько секунд; в результате производительность современных литьевых машин очень велика: за сутки они могут выпустить от 15 до 40 тыс. изделий среднего размера и несколько сотен тысяч мелких.

С термореактивными материалами дело обстоит сложнее: после того как они отвердели, вернуть их в вязко-текучее состояние, при котором они могли бы снова стать пластичными, практически невозможно. Поэтому литье из них затруднено; их по большей части прессуют под нагревом, а образовавшиеся изделия выдерживают в форме столько времени, сколько необходимо, чтобы смола по всему сечению изделия перешла в неплавкое состояние. Зато изделие уже не требует охлаждения.

Хотя метод горячего прессования несколько менее производителен, чем литье под давлением, однако даже он во много раз быстрее обычных технологических процессов изготовления металлических изделий. Это обеспечивает огромный дополнительный выигрыш при замене пластическими массами металлов. Ведь многие сложные металлические изделия требуют для своей отделки длинного ряда производственных операций. Характерным примером может служить изготовление штампов, требующих длительных усилий наиболее квалифицированных инструментальщиков. В советской автомобильной промышленности сейчас применяют штампы, изготовленные из так называемых эпоксидных смол с соответствующим наполнителем. Они создаются с помощью одной основной операции — отливки и одной вспомогательной — зачистки отдельных, случайно образовавшихся неровностей. Промышленность вплотную подошла к разрешению проблемы формирования крупногабаритных изделий, например корпусов автомобилей, моторных лодок и т. д.

На примере пластической массы, получаемой способом ступенчатой полимеризации,— поликапролактама (так на языке химиков называется смола-капрон) — можно наглядно убедиться в том насколько условны границы, отделяющие на практике собственно пластические массы от синтетических волокон.

Смола капрон получается из лактама аминокапроновой кислоты — капролактама, которых в свою очередь добывается из фенола, бензола, фурфурола (весьма перспективного сырья, образующегося, в частности, при переработке сельскохозяйственных отходов) и ацетилена, получаемого при действии воды на карбид кальция. После окончания полимеризации поликапролактам выпускают из реактора через тонкую щель. При этом он застывает в виде ленты, которая затем размалывается в крошку. После дополнительной очистки от остатков мономера и получается нужная нам полиамидная смола. Из этой смолы, температура плавления которой достаточно высока (216-218°), изготовляют пароходные винты, вкладыши для подшипников, машинные шестерни и т. п. Но самое широкое применение полиамидные смолы находят при получении нитей, из которых делают негниющие рыболовные сети, капроновые и нейлоновые чулки и т. д.

Нити формируются из расплава смолы, который проходит через небольшие отверстия, образуя струйки, застывающие при охлаждении в элементарные нити. Несколько элементарных нитей соединяются в одну и подвергаются кручению и вытяжке.

Вместо 12 млн. овец Синтетическая шерсть — специальная ткань из синтетических материалов — не уступает по качеству натуральной шерсти, а обходится гораздо дешевле. Один завод синтетической пряжи, выпускающий в год 30-35 тыс. Т продукции, может заменить стадо овец в 12-15 млн. голов. Это значит, что 10 таких заводов свободно заменили бы все поголовье овец в СССР и высвободили бы из-под пастбищ по меньшей мере 10 млн. гектаров хороших земель.

Химия оказывается наиболее надежной союзницей такого решающего фактора промышленного прогресса, как автоматизация. Химическая технология в силу важнейшей своей особенности, особо подчеркнутой в докладе Н. С. Хрущева на XXI съезде КПСС, а именно непрерывности, — наиболее эффективный и желанный объект для автоматизации. Если учесть, вдобавок, что химическое производство в основных своих направлениях — это производство многотоннажное и массовое, то можно отчетливо представить себе, какие необъятные источники сбережения труда и расширения производства заключает в себе химия, особенно химия и технология полимеров.

Распознавая глубокие связи между строением важнейших технических материалов-полимеров и их свойствами и научившись «конструировать» полимерные материалы по своеобразным «химическим чертежам», ученые-химики могут смело сказать: «Век материалов неограниченного выбора начался».

 

Применение удобрений

 

 

Перед социалистическим сельским хозяйством стоит задача создать в нашей стране изобилие продуктов питания и в полной мере обеспечить промышленность сырьем.

В предстоящие годы намного увеличится производство зерновых продуктов, сахарной свеклы, картофеля, технических культур, плодов, овощей, кормовых растений. Намного возрастет производство основных продуктов животноводства: мяса, молока, шерсти и др.

В этой борьбе за изобилие продуктов питания химии принадлежит огромная роль.

Существует два пути увеличения производства сельскохозяйственных продуктов: во-первых, за счет расширения посевных площадей; во-вторых, за счет повышения урожайности на уже обрабатываемых земельных массивах. Тут-то химия и приходит на помощь сельскому хозяйству.

Рост производства минеральных удобрений в нашей стране.

Удобрения не только увеличивают количество, но и улучшают качество выращиваемых с их помощью сельскохозяйственных культур. Они повышают содержание сахара в свекле и крахмала в картофеле, увеличивают прочность волокон льна и хлопка и т. п. Удобрения усиливают сопротивляемость растений болезням, засухе и холоду.

Нашему сельскому хозяйству в ближайшие годы потребуется очень много удобрений минеральных и органических. Минеральные удобрения оно получает от химической промышленности. Кроме различных минеральных удобрений, химическая промышленность дает сельскому хозяйству ядохимикаты для борьбы с вредными насекомыми, болезнями растений и сорной растительностью,— гербициды, а также средства регулирования роста и плодоношения — стимуляторы роста, средства для предуборочного опадения листьев хлопчатника и др. (подробнее об их применении и действии рассказывается в т. 4 ДЭ).

 

Какие бывают удобрения

Применяемые в сельском хозяйстве удобрения делятся на две основные группы: органические и минеральные. К органическим удобрениям относятся: навоз, торф, зеленое удобрение (растения, усваивающие азот воздуха) и различные компосты. В состав их, помимо минеральных веществ, входят и органические вещества.

По содержанию основных питательных веществ минеральные удобрения делятся на азотные, фосфорные и калийные.

В нашей стране производятся также комплексные, или многосторонние, удобрения. Они содержат в своем составе не один, а два или три элемента питания. Значительно развивается применение в сельском хозяйстве и микроудобрений. В их состав входят бор, медь, марганец, молибден, цинк и другие элементы, небольшие количества которых (несколько килограммов на гектар) необходимы для развития и плодоношения растений.

Кроме того, в сельском хозяйстве применяются еще так называемые косвенные удобрения: известь, гипс и т. п. Они изменяют свойства почв: устраняют вредную для растений кислотность, усиливают деятельность полезных микроорганизмов, переводят в более доступную для растений форму питательные вещества, заключенные в самой почве, и т. п.

 

АЗОТНЫЕ УДОБРЕНИЯ

Исходным веществом для производства большинства азотных удобрений служит аммиак. Его получают синтезом из азота и водорода или в качестве побочного (попутного) продукта при коксовании углей и торфа.

Наиболее распространенные азотные удобрения — аммиачная селитра, сульфат аммония, кальциевая селитра, натриевая селитра, мочевина, жидкие азотные удобрения (жидкий аммиак, аммиакаты, аммиачная вода).

Эти удобрения отличаются друг от друга формой соединений азота. В одних азот содержится в форме аммиака. Это — аммиачные удобрения. К ним относится сульфат аммония. В других азот находится в нитратной форме, т. е. в виде солей азотной кислоты. Это — нитратные удобрения. К ним относятся натриевая селитра и кальциевая селитра. В аммиачной селитре азот содержится одновременно и в нитратной, и в аммиачной форме. В мочевине азот содержится в виде амидного соединения.

Нитратные формы азотных удобрений легко растворимы в воде, не поглощаются почвой и легко вымываются из нее. Они усваиваются растениями быстрее, чем другие формы азотных соединений.

Аммиачные удобрения также легко растворяются в воде и хорошо усваиваются растениями, но действуют они медленнее, чем нитратные. Аммиак хорошо поглощается почвой и слабо вымывается из нее. Поэтому аммиачные удобрения дольше обеспечивают растения азотным питанием. Они и дешевле. В этом их преимущество перед нитратными удобрениями.

 

Как производится аммиачная селитра

 

 

Аммиачная селитра — одно из наиболее распространенных удобрений.

Аммиачную селитру (иначе — азотнокислый аммоний) получают на заводах из азотной кислоты и аммиака путем химического взаимодействия этих соединений.

Процесс производства состоит из следующих стадий:

  1. Нейтрализация азотной кислоты газообразным аммиаком.
  2. Упаривание раствора азотнокислого аммония.
  3. Кристаллизация азотнокислого аммония.
  4. Сушка соли.
Вот как производят азотнокислый аммоний.

На рисунке дана в упрощенном виде технологическая схема производства аммиачной селитры. Как же протекает этот процесс?

Исходное сырье — газообразный аммиак и азотная кислота (водный раствор) — поступает в нейтрализатор. Здесь в результате химического взаимодействия обоих веществ происходит бурная реакция с выделением большого количества тепла. При этом часть воды испаряется, и образующийся водяной пар (так называемый соковый пар) через ловушку отводится наружу.

Неполностью упаренный раствор азотнокислого аммония поступает из нейтрализатора в следующий аппарат — донейтрализатор. В нем после добавки водного раствора аммиака заканчивается процесс нейтрализации азотной кислоты.

Из донейтрализатора раствор азотнокислого аммония перекачивается в выпарной аппарат — непрерывно действующий вакуум-аппарат. Раствор в таких аппаратах выпаривается при пониженном давлении, в данном случае — при давлении 160-200 мм рт. ст. Тепло для упаривания передается раствору через стенки трубок, обогреваемых паром.

Упаривание ведется до тех пор, пока концентрация раствора не достигнет 98%. После этого раствор идет на кристаллизацию.

По одному способу кристаллизация азотнокислого аммония происходит на поверхности барабана, который изнутри охлаждается. Барабан вращается, на поверхности его образуется корка кристаллизующегося азотнокислого аммония толщиной до 2 мм. Корка срезается ножом и по желобу направляется на сушку.

Сушат аммиачную селитру горячим воздухом во вращающихся сушильных барабанах при температуре 120°. После сушки готовый продукт отправляют на упаковку. Аммиачная селитра содержит 34-35% азота. Чтобы уменьшить слеживаемость, в ее состав при производстве вводят различные добавки.

Аммиачная селитра выпускается заводами в гранулированном виде и в виде чешуек. Чешуйчатая селитра сильно поглощает влагу из воздуха, поэтому при хранении она расплывается и теряет рассыпчатость. Гранулированная аммиачная селитра имеет вид зерен (гранул).

Гранулирование аммиачной селитры большей частью производится в башнях (см. рисунок). Упаренный раствор азотнокислого аммония — плав — разбрызгивается при помощи центрифуги, укрепленной в потолке башни.

Схема грануляционных башен и выпарной станции

Плав непрерывной струей вливается во вращающийся дырчатый барабан центрифуги. Проходя через отверстия барабана, брызги превращаются в шарики соответствующего диаметра и во время падения вниз затвердевают.

Гранулированная аммиачная селитра обладает хорошими физическими свойствами, не слеживается при хранении, хорошо рассеивается в поле и медленно поглощает влагу из воздуха.

Сульфат аммония - (иначе — сернокислый аммоний) содержит 21 % азота. Большую часть сульфата аммония выпускает коксохимическая промышленность.

В предстоящие годы большое развитие получит производство наиболее концентрированного азотного удобрения — карбамида, или мочевины, которая содержит 46% азота.

Мочевину получают под высоким давлением синтезом из аммиака и углекислоты. Ее применяют не только как удобрение, но и для подкормки скота (дополняют белковое питание) и как полупродукт для производства пластмасс.

Большое значение имеют и жидкие азотные удобрения — жидкий аммиак, аммиакаты и аммиачная вода.

Жидкий аммиак получают из газообразного аммиака путем сжижения под высоким давлением. В нем содержится 82% азота. Аммиакаты представляют собой растворы аммиачной селитры, кальциевой селитры или мочевины в жидком аммиаке с небольшой добавкой воды. В них содержится до 37% азота. Аммиачная вода — водный раствор аммиака. В ней 20% азота. По своему действию на урожай жидкие азотные удобрения не уступают твердым. А производство их обходится намного дешевле, чем твердых, так как отпадают операции по упариванию раствора, сушке и гранулированию. Из трех видов жидкого азотного удобрения наибольшее распространение получила аммиачная вода. Разумеется, внесение жидких удобрений в почву, а также их хранение и транспортировка требуют специальных машин и оборудования.

 



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: