Химический метод Винклера для определения растворенного кислорода




 

Среди методов определения концентрации растворенного кислорода самым старым, но до сих пор не потерявшим своей актуальности, остается химический метод Винклера. В этом методе растворенный кислород количественно реагирует со свежеосажденной гидроокисью Mn(II). При подкислении соединения марганца более высокой валентности высвобождает йод из раствора иодида в эквивалентных кислороду количествах. В работе показано, что нельзя уверенно говорить об образовании только соединений марганца (III) или (IV). По мнению авторов этой публикации образуется смесь гидроксидов. Высвобожденный йод далее определятся титрованием тиосульфатом натрия с крахмалом, в качестве индикатора.

Стадия фиксации кислорода (щелочная среда)

Mn2+ + 2OH- = Mn(OH)2

2Mn(OH)2 + O2 = 2MnO2*H2O

Иодометрическое титрование (кислая среда)

MnO2*H2O + 4H+ + 2J- = Mn2+ + J2 +3H2O

J2 + J- = J3-

J3- + 2S2O32- = 3J- + S4O62-

По мере использования этого метода в природных водах было отмечено существенное влияние редокс-активных примесей. Но несмотря на это, методическая простота и надежность позволила уже 1925 году включить метод Винклера в сборник стандартных химических методов анализа вод. Обнаруженное влияние редокс примесей инициировало разработку химических модификации метода Винклера, некоторые из которых познее были также включены в Standard methods. В этих модификациях активно используются процедуры пробоподготовки, применение маскирующих агентов, методы холостой пробы, метод параллельной йодной пробы, регламентируются условия проведения анализа, при которых действием той или иной примеси можно пренебречь. Как показывает анализ научной периодики начало исследований по разработке таких химических модификаций относится к 20–30 годам. Ниже кратко представлены те трудности, которые могут возникать при проведении анализа по Винклеру при одновременном присутствии в воде часто встречающихся редокс-примесей.

Мешающее действие редокс-активных примесей:

1. Fe (III, II)

Соединения двухвалентного железа на стадии фиксации кислорода могут выступать как конкуренты по отношению к марганцу. Прореагировав с кислородом образуется гидроксид Fe(III), кинетика взаимодействия которого с иодидом в кислой среде замедлена. Так при концентрции железа более 25 мг/л использование классического варианта метода Винклера приводит к занижению результатов определений. Было предложено элиминировать влияние железа(III) добавками фторида или использованием фосфорной кислотой при подкислении пробы. Образующийся фторидный или фосфатный комплекс не дает железу взаимодействовать с ионами иодида. Но этот способ не дает возможности элиминировать влияние двухвалентного железа.

2. Нитриты

Обычно присутствие в воде нитритов обусловлено микробиологическим преобразованием аммония в нитрат. И известно, что нитриты в кислой среде способны окислять иодид ионы, вызывая тем самым завышений результатов в методе Винклера. Тем не менее при содержании в воде до 0.05–0.1 мгN/л можно применять прямой метод Винклера. В настоящее время самым распространенным способом нейтрализации влияния нитритов считается использование добавок азида натрия (метод Альстерберга). Здесь нельзя забывать, что излишнее увеличение концентрации азида может привести и к отрицательной ошибке. Это обусловлено возможностью протекания реакции:

2N3- + 2H+ + J2 = 2HJ + 3N2

Кроме применеия азида есть и другие способы подавления или учета влияния нитритов: применение мочевины или сульфаминовой кислоты. Все эти реактивы разрушают нитрит до молекулярного азота.

3. Органические вещества.

Понятно, что влияние орг. веществ, как выраженных восстановителей будет проявляться на всех этапах определения растворенного кислорода по Винклеру. Молекулярный кислород, окисленные формы марганца, молекулярный йод – все это достаточно сильные окислители для взаимодействия с органическими примесями. Если вода богата орг. веществами (окисляемость 15–30мгО2/л и более), то оказывается необходимым вводить поправку на их взимодействие. Например в руководстве предлагается проводить параллельную йодную пробу, находя тем самым сколько йода израсходовалось на иодирование орг. примесей. Но есть методы, которые основаны на проведении метода Винклера, в отличающихся от классических условиях (время анализа, концентрации реагентов). Таким образом удается подобрать условия, при которых мешающим действием примеси можно пренебречь.

Нельзя здесь не отметить оригинальные работы Голтермана. В этой работе ему удалось разработать химический метод, сочетающий в себе определение концентрации растворенного кислорода и определение химического потребления кислорода (ХПК-Суммарная нормальность восстановителей, выраженная в мгО2/л.). В соответствии с его методикой растворенный кислород в щелочной среде фиксируется не Mn(II), а солью Ce(III).

Ce3+ + 3OH- = Ce(OH)3

4Ce(OH)3 + O2 +2H2O = 4Ce(OH)4

Выделившейся Ce(IV) после растворения его в растворе кислоты определяется фотометрически или титриметрически. Кроме того, использование солей церия (III, IV) позволяет учесть расход церия (IV) на окисление примеси-восстановителя, проводя «холостой» опыт, т.е. вводя в пробу воды не Ce(III), а Ce(IV) на стадии фиксации кислорода.

aCe(OH)4 + bR = (a-b) Ce(OH)3 + Ce(OH)3, R-орг. примесь

4. Сульфиды и H2S

Обнаружено, что содержание в анализируемой воде сульфидов приводит к занижению результатов метода Винклера. При этом обнаружено, что взаимодействие сульфида с окислителями носит стехиометрический характер: 1 моль кислорода и 2 моля сульфида. В результате реакции выделяется элементарная сера. Поскольку в методе Винклера сильными окислителями являются кроме кислорода также йод и маргенец (III, IV), то в формулировании механизма взаимодействия сульфида с окислителем есть различные мнения. Так в работе считается, что сульфид взаимодействует с окисленными формами марганца, а в с йодом. В работе разработан метод одновременного определения сульфидов и кислорода в пробе воды. Авторы, используя соли Zn, осаждают ZnS, который далее отделяют и определяют спектрофотометрически, а в оставшейся над осадком воде проводят определение растворенного кислорода. В более ранней работе использована сходная схема, но использовался не сульфат, а ацетат Zn. При взаимодействии кислорода и сульфида возможно также образование тиосульфата, в качестве промежуточного соединения. В работе предложен способ учета такого тиосульфата по методу холостой пробы.

В заключение нужно отметить, что наряду с модификациями и методиками, разработанными специально под конкретные примеси, существуют более общие методики, направленные на определения общего содержания восстановителей (метод Росса) и окислителей.

Точность прямого метода Винклера и его возможные ошибки.

На протяжении всей первой половины 20-го века в ходе лабораторных и полевых работ был собрана большая экспериментальная база по результатам определения кислорода методом Винклера. Были обнаружены расхождения в результатах определений растворенного кислорода в одних и тех же водах по методам, различающимся только деталями, например способом стандартизации раствора тиосульфата, концентрацией реагентов, способом титрования (всего раствора или аликвоты) и др. В большей мере эта проблема – проблема стандартизации метода Винклера, проявлется в многообразии таблиц растворимости кислорода. Различия в табличных значениях растворимости кислорода до 6% способствовали проведению исследований по принципиальным вопросам методической основы и методическим погрешностям метода Винклера. В результате таких работ был сформулирован ряд потенциальных источников принципиальных ошибок метода в чистых водах:

окисление иодида кислородом воздуха

улетучивание молекулярного иода

содержание растворенного кислорода в добавляемых реактивах в процедуре фиксации кислорода

примесь молекулярного иода в иодиде

несовпадение точки конца титрования и точки эквивалентности

малая устойчивость растворов тиосульфата натрия и соответственно необходимость частой стандартизации

ошибки при стандартизации тиосульфата натрия

трудность титрования малых количеств иода

использование крахмала в качестве индикатора: его нестойкость и уменьшение чувствительности с повышением температуры

Остановимся подробнее на наиболее значимых ошибках. Окисление иодида кислородом ускорется с ростом кислотности. Уменьшить влиние этого процесса можно регулируя рН среды. Рекомендуемое значение кислотности составлет рН=2–2.5. Увеличение рН более 2.7 опасно, т. к. там уже возможен процесс гидратообразования марганца. Одновременно с окислением иодида возможен также и процесс улетучивания йода. Образование комплексной частицы J3- в условиях избытка иодида (см. схему метода Винклера) позволет связать практически весь молекулярный йод в растворе. понятно, что вводя раствор соли марганца и щелочной реагент (щелочь+иодид), мы тем самым вносим неучтенное количество кислорода, растворенного в этих реактивах. Поскольку в различных вариантах метода Винклера использовались реактивы различных концентраций, то использовать в расчетах какую-либо одну поправку было нельзя. Приходилось для каждого метода использовать свои собственные расчетные или экспериментальные значения привнесенного с реактивами кислорода. Обычно эти значения находились в интервале 0.005–0.0104 ррм.

К середине 60-х годов назрела необходимость в единой процедуре определения растворенного кислорода. Это отчасти было обусловлено большим разнообразием химических методик, развитием инструментальных методов и необходимостью их взаимного сравнения. На основе опубликованной работы, Карпентер сформулировал процедуру определения кислорода по Винклеру. В этом варианте были учтены практически все потенциальные ошибки выявленные раннее. В совместной работе Кэррит и Карпентер дополнили эту методику поправкой на учет растворенного в реактивах кислорода (0.018 мл/л). Экспериментально измеренная в работе величина несколько отличалась и составляла 0.011 мл/л.

При определении точностных характеристик химического метода Винклера исследователи столкнулись с проблемой точного задания концентрации растворенного кислорода. Для этого использовались насыщение воды воздухом или кислородом при заданной температуре, стандартная добавка раствора кислорода в обезкислороженную воду, электрохимическое генерирование кислорода, использование альтернативных инструментальных методов определения кислорода. Не смотря на долгую историю этой проблемы и многочисленные работы, окончательное решение пока не найдено и вопрос по-прежнему остается открытым. Наиболее популярным способом задания концентрации кислорода в воде был и остается до сих пор – процедура насыщения воды кислородом воздуха при фиксированной температуре. Однако отсутствие единообразия процедуры (объем раствора, условия перемешивания, способ и скорость продувания кислорода) приводит к значительным ошибкам, достигающим 2%. В большей мере это проявлялось при работе в области меньше 5 мгО2/л.

Опираясь на высокоточное приготовление растворов кислорода, внесением стандартной добавки в обезкислороженую воду, Карпентеру удалось достигнуть правильности 0.1% и воспроизводимости 0.02% на уровне 5 мгО2/л для варианта метода Винклера с фотометрическим титрованием. В Таблице 1 показана погрешность классического варианта метода Винклера на различных уровнях концентрации растворенного кислорода. Таблица 1 составлена по опубликованным результатам полевых и лабораторных определений.


Таблица 1. Погрешность метода Винклера в чистых водах

мгО2 погрешность
0.05 ~30%
0.2–0.3 10–20%
0.8–1.7 3–5%
3 – … ~1%, но при тщательной работе возможно снижение до 0.1%.

 

Другим важным параметром, характеризующим возможности метода является нижняя граница определения. В литературе цитируется два значения нижней границы: ~0.05 и ~0.2 мгО2/л. Понятно, что предел обнаружения может определяеться следующими критериями:

нарушение стехиометрии реакций, лежащих в химической основе метода Винклера

чувствительность йод-крахмальной реакции

концентрацией используемого раствора тиосульфата и разрешающяя способность бюретки

В работе Поттера показано, что даже на уровне 0.0007 (!) мгО2/л стехиометрия основополагающих реакций сохраняется. В этой же работе говорится, что основной причиной, определяющей нижний предел является чувствительность йод-крахмальной реакции, которая оценивается как ~2·10-6Н (0.02–0.05 мгО2/л) [27, 29, 42, 43]. Таким образом можно сказать, что уровень 0.05 мгО2/л – это нижний предел обнаружения, а уровень 0.2 мгО2/л можно трактовать, как нижний предел метода (или значимости определения), т.е. тот уровень, на котором погрешность достигает 10–20% и более.

Иодометрический метод

ИСО 5813 устанавливает иодометрический метод определения растворенного в воде кислорода (метод Винклера, модифицированный для исключения некоторых помех).

Иодометрический метод применим для всех типов вод, свободных от мешающих веществ и содержащих растворенный кислород в концентрации более чем 0,2 мг/л вплоть до двойного насыщения кислородом (приблизительно 20 мг/л). Легко окисляемые органические вещества, такие как танины, гуминовые кислоты и лигнины, оказывают мешающие влияния. Окисляемые соединения серы, такие как сульфиды и тиомочевина, также оказывают мешающее влияние. В присутствии этих веществ предпочтительно использовать метод электрохимического датчика по ИСО 5814.

Нитриты в концентрации до 15 мг/л не оказывают мешающего воздействия при определении, потому что их связывают добавлением азида натрия в ходе анализа.

В присутствии окисляющих или восстанавливающих веществ необходимо применять модифицированные методы, которые описаны в данном разделе.

В присутствии взвешенных веществ, способных фиксировать или поглощать иод, можно использовать модифицированный метод, описанный ниже.

Сущность метода заключается в реакции растворенного в воде кислорода пробы со свежеосажденной гидроокисью марганца (II), которая образуется при добавлении гидроксида натрия или калия к сульфату марганца

Подкисление и окисление иодида соединением марганца более высокой валентности приводит к выделению иода в эквивалентных кислороду количествах. Выделенный иод определяют титрованием тиосульфатом натрия.

Реактивы

Раствор серной кислоты. Осторожно добавляют 500 мл концентрированной ой кислоты (р=1,84) к 500 мл воды, все время перемешивая. В присутствии валентного III железа используют фосфорную кислоту (Н3РО4), р=1,70.

Раствор серной кислоты (2), c (l/2H2SO4)=2 моль/л.

Щелочной раствор иодазида. Следует учитывать, что азид натрия сильно ядовит. Если известно, что нитриты отсутствуют, этот реактив может быть исключен.

Растворяют 35 г. гидроксида натрия (NaOH) или 50 г. гидроксида калия (КОН) и 38 г. иодида калия (KI) или 27 г. иодида натрия (Nal) в приблизительно 50 мл воды Отдельно растворяют 1 г азида натрия (NaN3) в нескольких миллилитрах воды Смешивают два раствора и разбавляют до 100 мл. Запасной раствор хранят в закрытой склянке из темного стекла.

После растворения и подкисления этот реагент не должен окрашиваться в присутствии раствора индикатора.

Раствор безводного сульфата марганца (II), 340 г./л (или раствор моногидрата фосфата марганца, 380 г./л). Можно использовать раствор тетрагидрата хлорида марганца (II), 450 г./л. Растворы фильтруют, если они непрозрачны.

Иодат калия, c(KIO3)=10 ммоль/л, стандартный раствор. Высушивают несколько граммов иодата калия (КIO3) при температуре 180 С. Взвешивают 3,567±О, ОО3 г и растворяют в воде. Разбавляют до 1 л. Отбирают 100 мл и разбавляют водой до 1 л в мерной колбе.

Тиосульфат натрия, стандартный раствор, c(Na2S2O3)=10 ммоль/л.

Приготовление. Растворяют 2,5 г пентагидрата тиосульфата натрия (Na2S2O32О) свежекипяченой и охлажденной воде. Добавляют до 0,4 г гидроксида натрия (NaOH) разбавляют до 1 л.

Хранят раствор в темной стеклянной бутыли.

Установление титра. Растворяют в конической колбе приблизительно 0,5 г иодата калия или натрия (KI или NaI) в 100–150 мл воды, Добавляют 5 мл раствора ой кислоты (2 моль/л).

Перемешивают и добавляют 20,00 мл стандартного раствора иодата калия. Разбавляют приблизительно до 200 мл и сразу же титруют выделившийся иод раствором тиосульфата натрия, добавляя раствор индикатора перед окончанием титрования, а цвет станет соломенно-желтым, и титруют до исчезновения окраски.

Концентрацию (с), выраженную в миллимолях на л, вычисляют по уравнению:

 

,

 

где

V – объем раствора тиосульфата натрия, используемый для титрования, мл.

Титр раствора следует проверять ежедневно.

Крахмал, свежеприготовленный раствор, 10 г./л.

Примечание. Могут быть использованы другие подходящие индикаторы.

Фенолфталеин, раствор 1 г/л в этиловом спирте.

Иод, с=0,005 моль/л. Растворяют 4–5 иодида калия или натрия в небольшом количестве воды и добавляют примерно 130 мг иода. После растворения иода объем доводят до 100 мл.

Иодид калия или иодид натрия (для приготовления вышеуказанного раствора).

Методика определения

Если предполагается мешающее влияние на результаты исследования окисляющих или восстанавливающих веществ, отбирают 50 мл анализируемой воды и нейтрализуют ее в присутствии 2 капель раствора фенолфталеина. Добавляют 0,5 мл раствора серной кислоты (I), несколько крупинок (массой приблизительно 0,5 г) иодида калия или натрия и несколько капель раствора индикатора – крахмала.

Если раствор станет голубым, значит есть окисляющие вещества.

Если раствор останется бесцветным, то добавляют 0,2 мл раствора иода и взбалтывают. Оставляют на 30 с. Если голубая окраска не появляется, значит есть восстанавливающие вещества.

Если присутствуют окисляющие или восстанавливающие вещества, то определение следует проводить, как указано для особых случаев.

При отсутствии окисляющих или восстанавливающих веществ определение следует проводить, как указано ниже.

Фиксация кислорода

После отбора проб, особенно в полевых условиях, немедленно добавляют в склянку, содержащую пробу, 1 мл раствора сульфата марганца (II) и 2 мл щелочного раствора иодазида, который вводят с помощью узких заостренных пипеток ниже ватерлинии. Осторожно закрывают пробку, чтобы избежать попадания пузырьков воздуха.

Если используется другая система отбора, то нужно следить, чтобы содержание кислорода в пробе не изменялось.

Несколько раз переворачивают склянку вверх дном, чтобы тщательно перемешать содержимое. Дав осесть осадку в течение 5 мин, смесь взбалтывают вторично, пока содержимое станет однородным. Затем колбу доставляют в лабораторию.

Пробу, если она защищена от света, можно хранить в течение 24 ч.

Выделение иода

Следует убедиться, что образовавшийся осадок осел в нижней трети склянки.

Медленно добавляют 1,5 мл раствора серной кислоты или соответствующий объем раствора фосфорной кислоты, закрывают пробкой и взбалтывают содержимое до полного растворения осадка и выделения свободного иода.

Примечание. Если титрование выполняют прямо в колбе, то нужно соответствующую порцию чистой всплывающей жидкости осторожно передавить через сифон, не взбалтывая осадка.

Титрование

Содержимое колбы или его аликвоту (объем V) помещают в коническую колбу. Титруют раствором тиосульфата натрия, используя в качестве индикатора раствор крахмала, добавленный в конце титрования, или другой подходящий индикатор.

Выражение результатов

Содержание растворенного кислорода (со) выраженное в миллиграммах кислорода на литр, вычисляют по уравнению:

 

 

где

Мr – относительная молекулярная масса кислорода (Мr=32);

V1 – объем исследуемой пробы или ее аликвоты (V1=V0, если было оттитровано все содержимое пробы), мл;

V2 – объем раствора тиосульфата натрия, используемый на титрование содержимого склянки или аликвоты, мл;

с – концентрация раствора тиосульфата натрия, моль/л.

 

 

где

V0 – объем склянки, мл;

V’ – сумма объемов раствора сульфата марганца (II) (1 мл) и щелочного раствора иодазида (2 мл).

Результаты записывают с точностью до одной десятой.

Особые случаи

Присутствие окисляющих веществ. Сущность метода заключается в определении во второй контрольной пробе концентрации окисляющих веществ кроме растворенного кислорода с внесением поправки в результаты, полученные по основному методу.

Методика определения

Отбирают две контрольные пробы и проводят определение растворенного кислорода в первой контрольной пробе, как описано выше.

Переносят второй контрольный образец в коническую колбу соответствующей вместимости. Добавляют 1,5 мл раствора серной кислоты (I) или соответствующий объем раствора фосфорной кислоты, затем 2 мл щелочного реактива иодазида и 1 мл раствора сульфата марганца. Выдерживают 5 мин. Титруют раствором тиосульфата натрия в присутствии или раствора крахмала, добавленного в конце титрования, или другого подходящего индикатора.

Присутствие восстанавливающих веществ. Сущность метода заключается в окислении восстанавливающих веществ в первой и во второй контрольных пробах путем добавления избытка раствора гипохлорита натрия; определении содержания растворенного кислорода в одной из контрольных проб; определении избытка гипохлорита натрия в другой контрольной пробе.

Реактивы, указанные выше, плюс гипохлорит натрия и раствор, содержащий примерно 4 г/л свободного хлора. Раствор получают разбавлением концентрированного раствора гипохлорита натрия, имеющегося в продаже. Концентрацию свободного хлора определяют иодометрически.

Методика определения

В обе контрольные пробы добавляют 1,00 мл (или, если нужно, больше, точно измерив объем) раствора гипохлорита натрия. Колбы закрывают пробками и взбалтывают.

С одной контрольной пробой проводят определение по основной методике, а с другой – как указано в методике для окисляющих веществ.

Пирофосфатный метод

 

В предлагаемом методе использована та же реакция окисления марганца (II) растворенным кислородом до марганца (III) в щелочной среде, которая послужила основой для метода Винклера. Однако вследствие присутствия в растворе пирофосфата натрия выпавший осадок растворяется, поскольку пирофосфатные комплексы марганца (II) и марганца (III) растворимы в воде. Комплекс Мn (III) имеет яркую красно-фиолетовую окраску. Его концентрацию определяют титрованием раствором восстановителя (гидрохинона или соли Мора) в кислой среде, добавляя к концу титрования ред-окс индикатор – дифениламин или N-фенилантраниловую кислоту.

Главным преимуществом этого метода является то, что он может быть использован в присутствии многих веществ, реагирующих с иодом или иодид-ионами, в частности – в присутствии нитритов, и тем мешающих определению кислорода по Винклеру.

Если проба содержит «активный хлор», его надо определить и найденное количество в пересчете на кислород вычесть из результата определения кислорода.

Реактивы

Сульфат марганца, 40%-ный раствор.

Едкое кали, 70%-ный раствор.

Серная кислота ч. д. а., разбавленная (1:4).

Гидрохинон, 0,05 н. раствор. Растворяют 2,753 г. гидрохинона в 800 мл дистиллированной воды и после прибавления 30 мл разбавленной (1: 1) серной кислоты доводят дистиллированной водой до 1 л. Титр этого раствора определяют через 2 дня после его приготовления. Для этого к 20 мл подкисленного раствора пирофосфата (19,948 г. безводного Na4P2O7 и 16,3 мл разбавленной (1: 4) H2SO4 в 100 мл раствора) прибавляют 7 мл разбавленной (1: 4) серной кислоты, 5 мл 1 М раствора MnSO4 и 10 мл титрованного 0,05 н. раствора К2Сг2О7. Через 5 мин приготовленный раствор титруют раствором гидрохинона, добавляя к концу титрования 2 капли раствора индикатора – дифениламина.

Раствор очень устойчив. Если его приготовлять из гидрохинона, очищенного возгонкой, раствор сохраняется без изменения титра в течение месяца.

Соль Мора, 0,05 н. раствор в разбавленной серной кислоте (примерно 0,1 н.). Приготовляют обычным способом и устанавливают титр по титрованному раствору бихромата.

Дифениламин, 1%-ный раствор в концентрированной серной кислоте.

Бихромат калия, 0,05 н. раствор. Растворяют 2,4516 г. высушенного х. ч. бихромата калия в дистиллированной воде и разбавляют этой водой до 1 л. Раствор служит для установки титра раствора гидрохинона или соли Мора.

Пирофосфат натрия Na4P2O7 ч. д. а.

Ход определения

Пробу анализируемой воды отбирают в кислородную склянку, как описано в предыдущем методе, и таким же способом связывают растворенный кислород прибавлением 2 мл раствора сульфата марганца (II) и 2 мл раствора едкого кали. Осадку дают полностью отстояться. С помощью водоструйного насоса медленно отсасывают часть прозрачного раствора, прибавляют 20 мл разбавленной (1:4) серной кислоты так, чтобы она стекала по стенкам склянки, и содержимое склянки перемешивают. Образовавшаяся суспензия гидратированной окиси марганца (III) окрашивает раствор в коричневый цвет. В склянку затем прибавляют 2 г пирофосфата натрия и перемешивают до тех пор, пока осадок не растворится, окрашивая жидкость в красно-фиолетовый цвет. Затем титруют раствором гидрохинона или соли Мора почти до обесцвечивания, прибавляют 2 капли раствора дифениламина и продолжают титрование до исчезновения синего окрашивания. Титрование заканчивается, если синяя окраска не появляется вновь в течение 1 мин.

Электрохимические методы

ИСО 5814 устанавливает электрохимический метод определения растворенного кислорода в воде с помощью электрохимической ячейки.

В зависимости от вида применяемого датчика можно измерять концентрацию кислорода (мг/л), процент насыщения кислорода (% растворенного кислорода), а также оба эти показателя одновременно.

Метод применим для измерения концентрации кислорода в воде, соответствующий насыщению от 0 до 100%. Однако большинство приборов позволяет измерять величины выше 100%, т.е. перенасыщенные. Данный метод применим для измерений в полевых условиях, для непрерывного наблюдения растворенного кислорода и для лабораторных исследований. Метод предпочтителен для сильно окрашенных и мутных вод а также для вод, содержащих железо и иодосодержащие вещества (все они могут мешать при контроле иодометрическим методом, описанном в ИСО 5813). Газы и пары, такие как хлор, двуокись серы, сероводород, амины, аммиак, двуокись углерода, бром, иод, которые диффундируют через мембрану, могут влиять на ход определения. Другие вещества, присутствующие в пробе, могут мешать определению, вызывая ухудшение качества мембраны или коррозию электродов. К таким веществам относятся растворители, масла, сульфиды, карбонаты и водоросли.

Данный метод применим для природных, сточных и соленых вод. Если анализируются морские воды или воды эстуариев, следует вводить поправку на соленость.

Реактивы

При анализе используют реактивы аналитического качества и дистиллированную воду или воду эквивалентной чистоты.

Сульфит натрия, безводный (Na2SO3) или кристаллогидрат (Na2SO3 7H2O).

Соль кобальта (II), например СоС122О

Приборы и оборудование

Измерительный прибор, состоящий из: электрохимической ячейки гальванического типа (например, свинец / серебро), снабженной, если необходимо, термочувствительным компенсирующим устройством; регистрирующего устройства, показывающего концентрацию кислорода в воде, или процентное насыщение кислородом, или ток в микроамперах.

Термометр с ценой деления 0,5°.

Барометр с ценой деления 10 Па.

Методика определения

При использовании измерительных приборов следует руководствоваться следующими правилами: не следует прикасаться руками к работающей поверхности мембраны; после замены электролита и мембраны или после высыхания мембраны ее смачивают и ждут, пока показание прибора не станет устойчивым, потом доводят до конца калибровку. Затраченное время будет зависеть от того, сколько его потребуется для расхода растворенного в электролите кислорода. При этом следят, чтобы пузырьки воздуха не попадали в датчик, когда его погружают в пробу.

Если требуется, следует проверить положение нуля на приборе путем погружения пробы в 1 л воды, в которую добавлено около 1 г сульфита натрия и около 1 мг соли кобальта.

Стабильная реакция должна установиться через 10 мин.

Примечание. Для современных приборов требуется 2–3 мин, многие из них можно калибровать на воздухе.

При калибровке в состоянии, близком к насыщению, дистиллированную воду насыщают воздухом при постоянной температуре, оставляют на 15 мин при этой температуре и определяют концентрацию растворенного кислорода иодометрическим методом. Погружают датчик в бутылку, полностью заполненную пробой, приготовленной и стандартизованной, как описано выше. Датчик должен стабилизироваться в этом растворе в течение 10 мин. Если необходимо, устанавливают показания прибора по известной концентрации пробы.

Если калибровка прибора не удается, следует заменить электролит и мембрану.

Примечания:

1. Если предыдущий опыт показал, что барботированием воздуха через сосуд можно получить образец, насыщенный кислородом, то иодометрическое определение можно не проводить, а использовать данные таблиц, помещенных в приложении к стандарту.

2. Выполняя определение, следует руководствоваться инструкцией по эксплуатации прибора. Для получения стабильных показаний прибора после погружения датчика в пробу ему дают время для достижения требуемого результата, проверяют температуру воды и / или атмосферное давление.

Перед использованием прибора для определения растворенного кислорода в воде следует регулярно проводить проверку линейности калибровочной кривой. Для проверки используют три-четыре сосуда объемом 250 мл, наполненные доверху водой с различной концентрацией растворенного кислорода (удаление кислорода проводят барботированием аргона или азота в течение разного времени для каждого сосуда). В этих сосудах определяют концентрацию кислорода по ИСО 5814 и по ИСО 5813 и результаты сравнивают.

Выражение результатов

Концентрацию растворенного кислорода выражают в мг/л. Результат записывают с точностью до первого десятичного знака.

Если результат был получен при температуре, отличающейся от той, при которой откалиброван прибор, необходимо скорректировать показания прибора. Некоторые приборы вводят поправку автоматически. Если этой системы нет, то точный результат вычисляют путем умножения результата, полученного при температуре изменения, на отношение:

 

 

где

с т – растворимость кислорода при температуре измерения;

сс – растворимость кислорода при температуре калибровки.

В таблицах ИСО 5814 приведены теоретические значения концентрации растворенного кислорода в зависимости от температуры при атмосферном давлении и в зависимости от температуры и от давления.

Как известно, растворимость кислорода в воде уменьшается с увеличением ее солености. Зависимость достаточно линейная для практических целей вплоть до концентрации солености 35 г./кг. В ИСО 5814 даны поправки для проведения точных измерений концентрации растворенного кислорода в морской воде и воде эстуариев.

В стандарте также приведены поправки, если во время отбора проб атмосферное давление не равно 101,325 кПа.

Кулонометрический метод анализа.

Использование мембран

Новая область применения ионоселективных электродов была открыта после создания особого типа сложных электродов, в которых объединяется в единое целое ионоселективный электрод с устройством для проведения специфической химической реакции или для разделения определяемых компонентов. В газочувствительных электродах традиционный ионный датчик контактирует с тонкой пленкой раствора реагента. Газопроницаемая мембрана помещается между электрохимической ячейкой и анализируемым образцом. Тот или иной подлежащий определению газ диффундирует через разделяющий слой до тех пор, пока не установится равновесие в пленке внутреннего раствора. Растворенный газ и реагент внутреннего электролита составляют буферную систему, активность буферируемого иона измеряется ионоселективным электродом.

В 1956 г. Кларк впервые предложил соединить газопроницаемую мембрану с электрохимическим электродом. Он создал электрод, чувствительный к кислороду. Электрод состоял из мембраны и платинового электрода, разделенных тонким слоем индифферентного электролита. Для определения кислорода, диффундирующего через мембрану, использовался амперометрический метод. Принципы, заложенные в основу электрода Кларка, до сих пор используются в современных кислородных датчиках.

Чаще используется ячейка, содержащая катодный и анодный узлы, а так же электролит, например KOH, загущённый крахмалом. В такой ячейке с катодом (индикаторным электродом) из позолоченной никелевой проволоки и кадмиевым анодом происходит следующая реакция:

на катоде O2+2H2O+4e → 4OH-

на аноде 2Cd+4OH- → 2Cd(OH)2+4e

Значение диффузионного тока в электрохимической ячейке определяет концентрацию кислорода в пробе.

Так как проницаемость мембраны сильно меняется с изменением температуры, то необходимо предусмотреть ввод поправки с помощью компьютера или другим способом, а также путем включения в электрическую цепь теплочувствительных элементов. Некоторые типы приборов также компенсируют изменения растворимости кислорода при различных температурах.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: