Шаг 1. Методика, применяемая на этом шаге, полностью совпадает с методикой построения аддитивной модели.
Таблица 3.5
№ квар- тала, t | Объем потреб-
ления электро-
энергии, ![]() | Итого за четыре квартала | Скользящая средняя за четыре квартала | Центрированная скользящая средняя | Оценка сезонной компоненты |
– | – | – | – | ||
657,5 | – | – | |||
655,25 | 1,3262 | ||||
665,5 | 1,5252 | ||||
708,75 | 693,75 | 0,5146 | |||
709,375 | 0,6640 | ||||
718,25 | 714,125 | 1,3891 | |||
689,25 | 703,75 | 1,4494 | |||
689,25 | 689,25 | 0,5658 | |||
660,5 | 674,875 | 0,5260 | |||
678,25 | 669,375 | 1,4820 | |||
690,625 | 1,3104 | ||||
0,6643 | |||||
690,5 | 687,75 | 0,6601 | |||
– | – | – | – | ||
– | – | – | – |
Шаг 2. Найдем оценки сезонной компоненты как частное от деления фактических уровней ряда на центрированные скользящие средние (гр. 6 табл. 3.5). Эти оценки используются для расчета сезонной компоненты S (табл. 3.6). Для этого найдем средние за каждый квартал оценки сезонной компоненты . Так же как и в аддитивной модели считается, что сезонные воздействия за период взаимопогашаются. В мультипликативной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна числу периодов в цикле. В нашем случае число периодов одного цикла равно 4.
Таблица 3.6
Показатели | Год | № квартала, i | |||
I | II | III | IV | ||
– | – | 1,3262 | 1,5252 | ||
0,5146 | 0,6640 | 1,3891 | 1,4494 | ||
0,5658 | 0,5260 | 1,4820 | 1,3104 | ||
0,6643 | 0,6601 | – | – | ||
Всего за i-й квартал | 1,7447 | 1,8501 | 4,1973 | 4,2850 | |
Средняя оценка
сезонной компоненты
для i -го квартала, ![]() | 0,5816 | 0,6167 | 1,3991 | 1,4283 | |
Скорректированная
сезонная компонента, ![]() | 0,5779 | 0,6128 | 1,3901 | 1,4192 |
Имеем
.
Определяем корректирующий коэффициент:
.
Скорректированные значения сезонной компоненты получаются при умножении ее средней оценки
на корректирующий коэффициент k.
Проверяем условие равенство 4 суммы значений сезонной компоненты:
.
Шаг 3. Разделим каждый уровень исходного ряда на соответствующие значения сезонной компоненты. В результате получим величины (гр. 4 табл. 3.7), которые содержат только тенденцию и случайную компоненту.
Таблица 3.7
t | ![]() | ![]() | ![]() | T | ![]() | ![]() |
0,5779 | 648,9012 | 654,9173 | 378,4767 | 0,9908 | ||
0,6128 | 605,4178 | 658,1982 | 403,3439 | 0,9198 | ||
1,3901 | 625,1349 | 661,4791 | 919,5221 | 0,9451 | ||
1,4192 | 715,1917 | 664,7600 | 943,4274 | 1,0759 | ||
0,5779 | 617,7539 | 668,0409 | 386,0608 | 0,9247 | ||
0,6128 | 768,6031 | 671,3218 | 411,3860 | 1,1449 | ||
1,3901 | 713,6177 | 674,6027 | 937,7652 | 1,0578 | ||
1,4192 | 718,7148 | 677,8836 | 962,0524 | 1,0602 | ||
0,5779 | 674,8572 | 681,1645 | 393,6450 | 0,9907 | ||
0,6128 | 579,3081 | 684,4454 | 419,4281 | 0,8464 | ||
1,3901 | 713,6177 | 687,7263 | 956,0083 | 1,0377 | ||
1,4192 | 637,6832 | 691,0072 | 980,6774 | 0,9228 | ||
0,5779 | 797,7159 | 694,2881 | 401,2291 | 1,1490 | ||
0,6128 | 740,8616 | 697,5690 | 427,4703 | 1,0621 | ||
1,3901 | 661,8229 | 700,8499 | 974,2515 | 0,9443 | ||
1,4192 | 653,1849 | 704,1308 | 999,3024 | 0,9277 |
Шаг 4. Определим компоненту T в мультипликативной модели. Для этого рассчитаем параметры линейного тренда, используя уровни . В результате получим уравнение тренда:
.
Подставляя в это уравнение значения , найдем уровни T для каждого момента времени (гр. 5 табл. 3.7).
Шаг 5. Найдем уровни ряда, умножив значения T на соответствующие значения сезонной компоненты (гр. 6 табл. 3.7). На одном графике откладываем фактические значения уровней временного ряда и теоретические, полученные по мультипликативной модели.
Рис. 3.5.
Расчет ошибки в мультипликативной модели производится по формуле:
.
Для сравнения мультипликативной модели и других моделей временного ряда можно, по аналогии с аддитивной моделью, использовать сумму квадратов абсолютных ошибок :
.
Сравнивая показатели детерминации аддитивной и мультипликативной моделей, делаем вывод, что они примерно одинаково аппроксимируют исходные данные.
Шаг 6. Прогнозирование по мультипликативной модели. Если предположить, что по нашему примеру необходимо дать прогноз об общем объеме потребления электроэнергии на I и II кварталы 2003 года, прогнозное значение уровня временного ряда в мультипликативной модели есть произведение трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда
.
Получим
;
.
Значения сезонных компонент за соответствующие кварталы равны: и
. Таким образом
;
.
Т.е. в первые два квартала 2003 г. следовало ожидать объема потребления электроэнергии порядка 409 и 436 кВт соответственно.