Содержание
Введение
1. Постановка задачи
2. Описание технологической схемы
3. Описание конструкции аппарата и обоснование его выбора
4. Технологический расчет
5. Гидравлический расчет
6. Элементы механического расчета
Заключение
Список литературы
Введение
Теплообменные аппараты (теплообменники) применяются для осуществления теплообмена между двумя теплоносителями с целью нагрева или охлаждения одного из них. В зависимости от этого теплообменные аппараты называют подогревателями или холодильниками.
По способу передачи тепла различают следующие типы теплообменных аппаратов:
- поверхностные, в которых оба теплоносителя разделены стенкой, причем тепло передается через поверхность стенки;
- регенеративные, в которых процесс передачи тепла от горячего теплоносителя к холодному разделяется по времени на два периода и происходит при попеременном нагревании и охлаждении насадки теплообменника;
- смесительные, в которых теплообмен происходит при непосредственном соприкосновении теплоносителей.
В химической промышленности наибольшее распространение получили поверхностные теплообменники, отличающиеся разнообразием конструкций, основную группу которых представляют трубчатые теплообменники, такие как: кожухотрубчатые, оросительные, погруженные и "труба в трубе".
Одним из самых распространенных типов теплообменников являются кожухотрубчатые теплообменники. Они представляют из себя пучек труб, концы которых закреплены в специальных трубных решетках путем развальцовки, сварки, пайки, а иногда на сальниках. Пучек труб расположен внутри общего кожуха, причем один из теплоносителей движется по трубам, а другой - в пространстве между кожухом и трубами.
|
Кожухотрубчатые теплообменники могут быть с неподвижной трубной решеткой или с температурным компенсатором на кожухе, вертикальные или горизонтальные. В соответствии с ГОСТ 15121-79, теплообменники могут быть двух- четырех- и шестиходовыми по трубному пространству.
Достоинствами кожухотрубчатых теплообменников являются: компактность; небольшой расход метала; легкость очистки труб изнутри, а недостатками - трудность пропускания теплоносителей с большими скоростями; трудность очистки межтрубного пространства и трудность изготовления из материалов, не допускающих развальцовки и сварки.
Кожухотрубчатые теплообменники могут использоваться как для нагрева, так и для охлаждения.
В качестве греющего агента в теплообменниках часто используется насыщенный водяной пар имеющий целый ряд достоинств:
- высокий коэффициент теплоотдачи;
- большое количество тепла, выделяемое при конденсации пара;
- равномерность обогрева, так как конденсация пара происходит при постоянной температуре;
- легкое регулирование обогрева.
Постановка задачи
В курсовой работе необходимо:
1. Выполнить технологический расчет выбранной конструкции аппарата (рассчитать тепловой поток и расход хладоагента);
2. Рассчитать коэффициент теплопередачи; определить площадь поверхности теплообмена;
3. Выполнить гидравлический расчет контактных устройств;
4. Произвести механический расчет элементов аппарата;
Описание технологической схемы
|
Принципиальная схема ректификационной установки представлена на рис. 2.1. Исходная смесь из промежуточной емкости 1 центробежным насосом 2 подается в теплообменник 3, где она подогревается до температуры кипения. Нагретая смесь поступает на разделение в ректификационную колонну 5 на тарелку питания, где состав жидкости равен составу исходной смеси.
Стекая вниз по колонне, жидкость взаимодействует с поднимающимся вверх паром, образующимся при кипении кубовой жидкости в кипятильнике 4. Начальный состав пара примерно равен составу кубового остатка, т.е. обеднен легколетучим компонентом. В результате массообмена с жидкостью пар обогащается легколетучим компонентом. Для более полного обогащения верхнюю часть колонны орошают в соответствии с заданным флегмовым числом жидкостью (флегмой), которая получается в дефлегматоре 6 путем конденсации пара, выходящего из колонны. Часть конденсата выводится из дефлегматора в виде готового продукта разделения – дистиллята, который охлаждается в холодильнике 7, и направляется в промежуточную емкость 8.
Из кубовой части колонны насосом 9 непрерывно выводится кубовая жидкость – продукт, обогащенный труднолетучим компонентом, который охлаждается в холодильнике 10 и направляется в емкость 11.
Таким образом, в ректификационной колонне осуществляется непрерывный неравновесный процесс разделения исходной смеси на дистиллят с высоким содержанием легколетучего компонента и кубовый остаток, обогащенный труднолетучим компонентом.
Рис. 2.1. Принципиальная схема ректификационной установки:
1 – емкость для исходной смеси; 2, 9 – насосы; 3 – теплообменник подогреватель; 4 – кипятильник; 5 – ректификационная колонна; 6 – дефлегматор; 7 – холодильник дистиллята; 8 – емкость для сбора дистиллята; 10 – холодильник кубовой жидкости; 11 – емкость для кубовой жидкости