Обычное оконное стекло всегда хрупко. Органическое стекло, I как мы часто называем полиметилметакрилат, менее хрупко. Его I можно уронить, не разбив. Если взять другие стеклообразные полимеры, такие как полистирол, поливинилхлорид, поликарбонат и др., то окажется, что, во-первых, они все значительно менее хрупки, чем силикатное (оконное) стекло, а во-вторых, хрупкость их очень различается. Для нас стеклообразные полимеры ценны в первую очередь тем, что они обладают пониженной хрупкостью по сравнению с силикатным стеклом, т. е. большим сопротивлением разрушению при ударе.
Определим понятие хрупкости и пути ее регулирования. Хрупкость — это способность стеклообразных полимеров разрушаться при малых деформациях, меньших, чем деформация, соответствующая пределу вынужденной эластичности.
На рис. 6 кривая 1 типична для хрупкого полимера. Полимер становится хрупким тогда, когда время до разрушения много меньше, чем время релаксации, и поэтому никакой перегруппировки сегментов под действием силы не происходит. Это и определяет незначительную величину деформации при разрушении. Вынужденно - эластические деформации в хрупких полимерах развиться не успевают, но вследствие наличия остаточного свободного объема стеклообразном полимере (порядка 2,5 %) происходит его хрупкое разрушение при деформации около 1 % (или немного больше), в то время как силикатные стекла разрушаются при деформации 0,1%.
Хрупкость полимерных стекол принято оценивать по величине температуры хрупкости Тхр. Чем выше Тхр, тем более хрупким считается полимер.
Температура хрупкости—это температура, при которой полимер разрушается в момент достижения предела вынужденной эластичности. Чтобы определить Тхр, строят зависимость предела вынужденной эластичности σт от температуры. Как следует и рис. 6, σт (максимум на кривой σ—ε) увеличивается с уменьшением температуры. Зависимость σт — Т приведена на рис. 9. Koгда температура становится ниже Тхр, вынужденная эластичность не развивается, и тогда определяют прочность полимера σр, который стал хрупким. На рис. 9 приведена также кривая
|
зависимости σр от температуры. Точка пересечения кривых (σр = σт) и определяет Тхр.
Зная Тхр и Тс, можно определить интервал температур, в котором полимер ведет себя как упругий нехрупкий материал. Если эластомеры применяют при температуре в пределах интервала высокоэластичности (между температурами стеклования и текучести), то стеклообразный полимер (пластмассу) применяют в интервале вынужденной эластичности (Тс —Тхр). Полиметилметакрилат можно применять как конструкционный материал, потому ЧЯ для него Тс = 110 ºС, а Тхр = 10 ºС. Полистирол нельзя применять без специальной модификации его структуры, потому что для него Тс =100°С, а Тхр=90°С.
Температура хрупкости, как и Тс, зависит от молекулярной массы (рис. 10). При малой молекулярной массе, когда мы имеем дело с олигомером, значения Тс и Тхр совпадают. Когда молекулы становятся достаточно длинными и, следовательно, появляется гибкость, Тс растет быстрее, чем Тхр и возникает температурный интервал вынужденной эластичности (Тс—Тхр) При дальнейшем росте молекулярной массы Тхр даже несколько
Рис. 9. Зависимость прочности σр и предела вынужденной эластичности σт от температуры
|
понижается, что приводит к увеличению интервала вынужденной эластичности для высокомолекулярных полимеров.
Из рис. 10 видно также, что с ростом молекулярной массы непрерывно ухудшается способность полимеров к необратимым деформациям. Это отражается в росте температуры текучести с ростом молекулярной массы. Рис. 10 показывает улучшение эксплуатационных характеристик полимеров вообще (эластомеров и пластмасс) с ростом молекулярной массы: растут температурные интервалы высокоэластичности (Тт —Тс) и вынужденной эластичности (Тс— Т хр).
Рис. 10. Зависимость температур текучести (Т т), стеклования (Тс) и хрупкости (Т хр) от молекулярной массы полимера
Для ряда полимеров увеличение молекулярной массы недостаточно для обеспечения нужной протяженности температурных интервалов
эластичности и вынужденной эластичности (отсутствия хрупкости). Прибегают к другим путям расширения интервалов, тем более что значительный рост молекулярной массы существенно затрудняет переработку полимеров.
Эластомеры для расширения температурного интервала высокоэластичности вулканизуют. Пластмассы для снижения температуры хрупкости модифицируют.
Снижению хрупкости способствует наличие в полимере таких групп атомов, которые участвуют во вторичных релаксационных переходах. Так, в полиметилметакрилате при комнатной темпера туре наблюдается широкий В-переход. Подведенная механическая энергия, например энергия удара, расходуется на повороты боковых эфирных групп в ПММА так, что рост возникающих трещин прекращается и полимер не разрушается. Вторичные релаксационные переходы, снижающие хрупкость, наблюдаются в поликарбонате, полиэтилентерефталате и других полимерах.
|
Если вторичные релаксационные переходы отсутствуют в нужной температурной области, как, например, в полистироле, то полимер модифицируют, вводя в него эластомеры. Эластомеры образуют в хрупкой матрице полистирола множество мелких частиц, препятствующих росту трещин, возникших при ударе. Полистирол с диспергированным в нем эластомером называют «ударопрочным полистиролом», он становится хрупким лишь при значительном охлаждении.
Низкомолекулярные пластификаторы, которые, как мы виде ли, снижают Тс, снижают также и Тхр. Однако Тс - при этом снижается быстрее, чем Тхр и поэтому интервал Тс –Тхр уменьшается с увеличением содержания пластификатора. Температура хрупкости определяет морозостойкость полимеров. Методы определения морозостойкости - это, как правило,
методы определения той температуры, при которой полимер начинает хрупко разрушаться. Так, полимер в виде бруска, закрепленного консольно, охлаждают, определяя температуру, при которой он
разрушается под действием заданного груза, падающего на него. Другой способ, применяющийся для пленочных материалов, состоит в том, что пленку сгибают в виде петли и охлаждают. Температура, при которой сплющивание петли приводит к излому пленки, характеризует морозостойкость пленки. Все методы определения морозостойкости так или иначе состоят в определении температуры, при которой полимер хрупко разрушается либо в условиях действия нагрузки заданной величины, либо деформирования на заданную величину. Методы определения морозостойкости имеют прикладное значение и приводятся в соответствующих ГОСТах. Температура, характеризующая морозостойкость, сильно зависит от метода ее определения и обычно не совпадает с Тхр, определенной так, как показано на рис. 9.
Итак, при охлаждении полимеров до Т = Тс свободный объем становится недостаточным для теплового перемещения сегментов. Это проявляется в потере полимером эластичности или способности к самопроизвольному сокращению после деформации. Поскольку время релаксации уменьшается под действием механического напряжения, сегменты сохраняют способность к перемещению под действием внешней силы без разрушения полимера. Наблюдающаяся при этом значительная вынужденно - эластическая деформация не исчезает в стеклообразном полимере после снятия нагрузки, хотя и обусловлена развертыванием молекулярных клубков под действием внешнего деформирующего; усилия Охлаждение полимера до температуры ниже Тс может привести и к потере способности к вынужденно - эластической деформации — полимер перейдет в хрупкое состояние. Существенно важной чертой полимерных стекол является то, что при Т< Тс в них самопроизвольно происходят релаксационные переходы, связанные с переремещением молекулярных группировок, меньших, чем размер сегмента. Это привадит к диссипации энергии, в том числе энергии удара, и делает полимерные стекла существенно более стойкими к удару по сравнению с низкомолекулярными силикатными стеклами.
Список использованной литературы.
1) В. Н., Кулезнёв, В. А. Шершнёв «Химия и физика полимеров».-2-е издание, перераб. и доп.- Москва «КолосС» 2007 г.
2) И. И. Тугов, Г. И. Кострыкина «Химия и физика полимеров». Москва «Химия» 1989
3) А. А. Тагер «Физика-химия полимеров».-2-е издание. Москва «Химия» 1988 г.
4) Г. М. Бартенев, С. Я Френкель «Физика полимеров» Ленинград «Химия» 1990 г.
5) Г. М.Бартенев, Ю. В. Зеленев «Курс физики полимеров» Москва 1976 г.
6) В. Е. Гуль; В.Н. Кулезнев. «Структура и механические свойства полимеров» Москва «Высшая школа», 1966 г.
7) И. П. Антонова, Антипова «Химия и физика полимеров Москва, 2001
8) Авторы: В.Ф. Куренков, Н.И. Авакумова, Л.А. Бударина. «Практикум по химии и физике полимеров» Москва, 1990 г.