Применение систем эконометрических уравнений.




Наиболее широко системы одновременных уравнений используются при построении макроэкономических моделей экономики страны. В большинстве случаев это мультипликаторные модели кейнсианского типа. Статическая модель Кейнса народного хозяйства в самом простом виде следующая:

где С - личное потребление;

y - национальный доход в постоянных ценах;

I - инвестиции в постоянных ценах.

 

В силу наличия тождества в модели (второе уравнение системы) Он характеризует предельную склонность к потреблению. Если из каждой дополнительной тысячи рублей дохода на потребление расходуется в среднем 650 рублей и 350 рублей инвестируется. Если b>1 то y<C+I, и на потребление расходуются не только доходы, но и сбережения. Параметр a Кейнс истолковывал как прирост потребления за счет других факторов.

Структурный коэффициент b используется для расчета мультипликаторов. По данной функции потребления можно определить два мультипликатора – инвестиционный мультипликатор потребления Mc и национального дохода My:

т.е. при

 

Это означает, что дополнительные вложения 1 тыс. руб. приведут при прочих равных условиях к дополнительному увеличению потребления на 1,857 тыс. руб.

 

т.е. при ,

т.е. дополнительные вложения 1 тыс. руб. на длительный срок приведут при прочих равных условиях к дополнительному доходу 2,857 тыс. руб.

Эта модель точно идентифицируема, и для получения применяется КМНК. Строится система приведенных уравнений:

в которой а параметры и являются мультипликаторами, т.е. и . Для проверки подставим балансовое равенство в первое уравнение структурной модели:

Аналогично поступим и со вторым уравнением структурной модели:

Таким образом, приведенная форма содержит мультипликаторы, интерпретируемые как коэффициенты множественной регрессии, отвечающие на вопрос, на сколько единиц изменится значение эндогенной переменной, если экзогенная изменится на 1 единицу. Это делает модель удобной для прогнозирования.

В более поздних исследованиях статическая модель Кейнса включала уже не только функцию потребления, но и функцию сбережений:

где сбережения.

Здесь три эндогенные переменные - и и одна экзогенная - Система идентифицируема: в первом уравнении Н= 2 и D= 2, во втором Н= 1, D= 0; рассматривается как предопределенная переменная.

Наряду со статическими широкое распространение получили динамические модели экономики. Они содержат в правой части лаговые переменные, а также учитывают тенденцию. Например, модель Кейнса экономики США 1950-1960 гг. в упрощенном варианте:

 

чистые трансферты в пользу администрации;

кап. вложения;

правительственные расходы;

заработная плата в период ;

прибыль;

прибыль в период ;

общий доход.

Модель содержит 5 эндогенных переменных - (в левой части системы) и (зависимая переменная, определяемая по первому тождеству), три экзогенные переменные - и две лаговые предопределенные переменные и Данная модель сверхидентифицируема и решается ДМНК. Для прогнозных целей используется приведенная форма модели:

 

Здесь мультипликаторами являются коэффициенты при экзогенных переменных. Они отражают влияние экзогенной переменной на эндогенную переменную.

Система одновременных уравнений нашла применение в исследованиях спроса и предложения. Линейная модель спроса и предложения имеет вид:

Здесь 3 эндогенные переменные: и При этом, если и представляют собой эндогенные переменные, исходя из структуры самой системы, то является эндогенной по экономическому содержанию (цена зависит от спроса и предложения), а также в результате наличия тождества Приравняем уравнения, получим:

Модель не содержит экзогенной переменной. Однако, чтобы модель имела статистическое решение и можно было убедиться в ее справедливости, в модель вводятся экзогенные переменные.

Например, модель вида:

где доход на душу населения; климатические условия (при спросе и предложении зерна).

Переменные и экзогенные. Введя их в модель получаем идентифицированную структурную модель, где можно применить КМНК.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-01-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: