Превращение серосодержащих соединений
В неуглеводороных соединениях связи C–S и S–S менее прочны, чем связи С–С и С–Н, усредненные энергии связи которых равны 201, 218, 247 и 365 кДж/моль соответственно. Но поскольку процесс гидроочистки каталитический, то прочность связи следует оценивать с учетом энергии образования промежуточных комплексов катализатора с осколками, образовавшимися после разрыва связей. Эта энергия значительно компенсирует затрату энергии разрыва связи. Например, на никеле энергия разрыва связи C–S составляет 20 кДж/моль, С–N – 104 кДж/моль, а С–С – 201кДж/моль. Этим объясняется селективность процессов гидроочистки: почти количественная деструкция связей С–S без существенного затрагивания связей С–С, т.е. без заметной деструкции сырья.
Меркаптаны превращаются в углеводород и сероводород:
RSH + H2 RH + H2S
Сульфиды гидрируются через стадию образования меркаптанов:
RSR’ R’SH R’H + H
2S
Дисульфиды гидрируются до сероводорода и соответствующих углеводородов также через стадию образования меркаптанов:
RSSR’ RSH + R’SH RH + R’H + 2H2S
В циклических сульфидах, например тиофане, вначале разрывается кольцо, затем отщепляется сероводород и образуется соответствующий углеводород:
CH
3CH
2CH
2CH
3 +H
2S
Соединения тиофенового ряда представлены бензтиофеном, дибензтиофеном, алкилбибезтиофенами и диалкилдибензтиофенами – малоактивны. Их доля в составе серусодержащих соединений дизельных фракций достигает 50 – 60 %, что в пересчете на серу при общем ее содержании около 1,2 %(масс.) составляет 0,3 – 0,7 %(масс.). Устойчивость сераорганических соединений к гидрогенолизу с увеличением числа ароматических и нафтеновых колец в его молекуле возрастает.
Тиофен и бензтиофен сначала гидрируются до производных тетрагидротиофена, которые затем превращаются алканы и алкилпоизводные ароматических углеводородов:
CH
3CH
2CH(R)CH
3 + H
2S
+ H2S
Гидрогенолиз дибензтиофена происходит по схеме:
По реакции (1) гидрогенолиз дибензтиофена происходит преимущественно на алюмокобальтмолибденовом, а по реакции (2) и (3) – на алюмоникельмолибденовом катализаторе.
Превращение азотсодержащих соединений
Азот в нефтепродуктах находится в основном в гетероциклах – в виде производных пиррола и пиридина.
Гидрогенолиз связи C – N протекает труднее, чем связи C – S, поэтому в процессах гидроочистки азот удалить сложнее, чем серу. Легче всего гидрируются амины:
C6H5CH2NH2 C6H5CH3 + NH3
Анилин, содержащий аминогруппу, связанную с ароматическим кольцом, гидрируется значительно труднее:
C6H5NH2 C6H6 + NH3
Хуже всего удаляется азот из циклических структур. Пиррол гидрируется до бутана и аммиака:
CH
3CH
2CH
2CH
2NH
2 CH
3CH
2CH
2CH
3 + NH
3
Пиридин превращается в пентан и аммиак по схеме:
CH
3CH
2CH
2CH
2CH
2NH
2 CH
3CH
2CH
2CH
2CH
3 + NH
3
Так как сопряжённая электронная система в молекуле пиридина значительно более устойчива, чем в молекуле пиррола, пиридин гидрируется труднее, чем пиррол.
Гидрирование бициклических и полициклических ароматических углеводородов начинается с кольца, содержащего гетероатом:
+ NH
3