Для перемещения по наклонным, вертикальным плоскостям используются системы аналогичные «шагающим» конструкциям, но с пневматическими присосками.
Управление
Управление бывает нескольких типов:
1. Программное управление — самый простой тип системы управления, используется для управления манипуляторами на промышленных объектах. В таких роботах отсутствует сенсорная часть, все действия жёстко фиксированы и регулярно повторяются. Для программирования таких роботов могут применяться среды программирования типа VxWorks/Eclipse или языки программирования например Forth, Оберон, Компонентный Паскаль, Си. В качестве аппаратного обеспечения обычно используются промышленные компьютеры в мобильном исполнении PC/104 реже MicroPC. Может происходить с помощью ПК или программируемого логического контроллера.
2. Адаптивное управление — роботы с адаптивной системой управления оснащены сенсорной частью. Сигналы, передаваемые датчиками, анализируются и в зависимости от результатов принимается решение о дальнейших действиях, переходе к следующей стадии действий и т. д.
3. Основанное на методах искусственного интеллекта.
4. Управление человеком (например, дистанционное управление).
Принципы управления
Современные роботы функционируют на основе принципов обратной связи, подчинённого управления и иерархичности системы управления роботом.
Иерархия системы управления роботом подразумевает деление системы управления на горизонтальные слои, управляющие общим поведением робота, расчётом необходимой траектории движения манипулятора, поведением отдельных его приводов, и слои, непосредственно осуществляющие управление двигателями приводов.
|
Подчинённое управление
Подчинённое управление служит для построения системы управления приводом. Если необходимо построить систему управления приводом по положению (например, по углу поворота звена манипулятора), то система управления замыкается обратной связью по положению, а внутри системы управления по положению функционирует система управления по скорости со своей обратной связью по скорости, внутри которой существует контур управления по току со своей обратной связью.
Современный робот оснащён не только обратными связями по положению, скорости и ускорениям звеньев. При захвате деталей робот должен знать, удачно ли он захватил деталь. Если деталь хрупкая или её поверхность имеет высокую степень чистоты, строятся сложные системы с обратной связью по усилию, позволяющие роботу схватывать деталь, не повреждая её поверхность и не разрушая её.
Управление роботом может осуществляться как человеком-оператором, так и системой управления промышленным предприятием (ERP-системой), согласующими действия робота с готовностью заготовок и станков с числовым программным управлением к выполнению технологических операций.
Действия промышленного робота
Среди самых распространённых действий, совершаемых промышленными роботами можно назвать следующие:
· перемещение деталей и заготовок от станка к станку или от станка к системам сменных палет;
· сварка швов и точечная сварка;
· покраска;
· выполнение операций резанья с движением инструмента по сложной траектории.
Промышленный робот является устройством, производящим некие манипулятивные функции, схожие с функциями руки человека.
|
Достоинства использования
· достаточно быстрая окупаемость
· исключение влияния человеческого фактора на конвейерных производствах, а также при проведении монотонных работ, требующих высокой точности;
· повышение точности выполнения технологических операций и, как следствие, улучшение качества;
· возможность использования технологического оборудования в три смены, 365 дней в году;
· рациональность использования производственных помещений;
· исключение воздействия вредных факторов на персонал на производствах с повышенной опасностью;
РОБОТ CKBOT
Если этого робота ударить ногой, он рассыплется на три части. Далее эти части оживут и, ползая как гусеницы, начнут сближаться. Через весьма приличное время трём кускам бота наконец удаётся состыковаться, после чего тот встаёт на ноги, готовый к дальнейшей работе
На выставке Wired NextFest 2008, прошедшей в конце сентября – начале октября в Чикаго, был показан забавный робот ckBot, которого можно было бы принять за художественный проект с техническим уклоном. Но он –часть серьёзной работы, чьи плоды однажды могут пригодиться сразу в нескольких прикладных областях.
Любопытно, что все три части робота идентичны (каждая построена из пяти блоков, обладающих моторизованным сочленением, допускающим поворот деталей на 180 градусов). Это не мешает им в нужный момент определиться, какие из них станут ногами, а какая — туловищем.
Американские инженеры назвали это умение "Самосборка после взрыва" (Self-reassembly After Explosion), впрочем, уточняя, что "взрыв" – это просто некое сильное воздействие, не важно, какой природы.
|
Построил эту машину Марк Йим (Mark Yim), адъюнкт-профессор инженерии в университете Пенсильвании (University of Pennsylvania) и его коллеги из лаборатории модульных роботов (Modular Robotics Lab).
Как вы уже, наверное, догадались, каждый модуль ckBot обладает своими "мозгами", батарейкой, электромоторчиками и системами связи.
Добавим лишь, что между собой части робота стыкуются при помощи магнитов, а ищут они друг друга благодаря встроенным цифровым камерам и мигающим светодиодным маякам. Кроме того, у каждой части есть акселерометр для "чувства равновесия" как при самостоятельном движении, так и в составе полного робота.
Легко представить, что оснащённый различными датчиками самособирающийся робот пригодится как военным (для разведки, например), так и учёным (изучение планет), или ремонтникам (проникновение в труднодоступные части больших установок).
Что может при этом робота "раскидать" — не вполне понятно. Да и неважно. Главное — рассыпавшись, бот может вернуть себе первоначальный вид. Правда, в нынешнем варианте дроида рановато выпускать на настоящее поле боя, пусть сперва набьёт шишек (смотрите видео до конца).
Логично спросить: "К чему такие сложности?" Дело в том, что, по общему замыслу проекта, ckBot и ему подобные машины должны собираться из куда большего количества модулей. При этом фигура, которую они образуют, зависит только от выбранной программы, а таковых внутри модулей может быть запасено немало. Хотите — получите "змею", желаете — "кошку" или "собаку".
Помните змейку Рубика (Rubik's Snake)? Тот же принцип, только всё крутится само. Так что новый бот мог бы стать классной игрушкой. Но Марк видит для него другое поле деятельности.
Непрерывно трансформируемый робот ("самореконфигурируемый" по определению создателей) пригодится там, где нужно проявлять гибкость в зависимости от ситуации. Скажем, в узкую щель может проползти "змея", какую-то механическую работу лучше поручить андроиду, а на большое расстояние путь катится "колесо".
Да, цепочка блоков ckBot может замкнуться и, меняя форму получившегося обода, катиться со скоростью до 1,6 метра в секунду. Это самый быстрый способ передвижения для ckBot, установили американские исследователи.
СkBot напомнил нам о целом ряде его идеологических предшественников. Вспомним, к примеру, робота из университета Корнелла (Cornell University).
Этот аппарат мог не просто собираться из абсолютно идентичных кусочков, но и строить свои копии. Правда, бот тот стоял на месте, а очередные детальки для сборки его собрата ему надо было класть в строго определённое место.
Получается, что группа под руководством Йима сумела "освободить" такого самосборщика, придав ему и его блокам не только способность к перемещению, но и умение находить друг друга. Осталось только научиться делать такие блоки всё более "умными" и мощными, и вперёд — отпускайте фантазию на волю.