Белковые и пептидные чипы




На тему: «Биочипы, использование в медицине.»

 

Выполнила: Уразова Ж.

Проверила:Мельдебекова А.А

 

План:

Ø Введение

Ø Что такое биочип?

Ø Способы изготовления биочипов

Ø Новейшие специальные разработки в области биочипов

Ø Виды

Ø ПЕРСПЕКТИВЫПРИМЕНЕНИЯ БИОЧИПОВ

 

 

Введение

Открытие функционального значения тысяч генов и молекулярных механизмов действия множества ферментов стало революционным событием в биологии, оказавшим и продолжающим оказывать огромное влияние на развитие медицины XXI в. Перед учеными и медиками открылись уникальные возможности для выяснения причин многих инфекционных и наследственных заболеваний, а также разработки эффективных методов их лечения. В свою очередь, развитие новых диагностических методов потребовало и создания новых технологий многопараметрического анализа биологических образцов, с помощью которых можно одновременно исследовать множество белковых и ДНК-маркеров различных заболеваний, функционально-значимых биологических макромолекул и их комплексов. Так появилась технология биологических микрочипов, способных, подобно микрочипам электронным, извлекать и обрабатывать огромные массивы информации из одного небольшого образца биологического материала, полученного от конкретного пациента.

Биологические микрочипы являются одним из наиболее быстро развивающихся экспериментальных направлений современной биологии. Существует два основных типа биочипов. Первый тип - этомикроматрицы различных соединений, главным образом биополимеров, иммобилизованных на поверхности стекла, в микрокаплях геля, в микрокапиллярах. Другим типом биочипов являются миниатюризованные "микролаборатории". Эффективность биочипов обусловлена возможностью параллельного проведения огромного количества специфических реакций и взаимодействий молекул биополимеров, таких как ДНК, белки, полисахариды, друг с другом и низкомолекулярными лигандами. Удается в достаточно простых параллельных экспериментах собрать и обработать на отдельных элементах биочипа огромное количество биологической информации. В этом заключается фундаментальное информационное сходство биочипов с электронными микрочипами. Однако между ними имеется и ряд принципиальных различий.

 

 

Что такое биочип?

Что же это такое — биочипы? Точнее всего их описывает английское название DNA-microarrays, т.е. это организованное размещение молекул ДНК на специальном носителе. Профессионалы называют этот носитель «платформой». Платформа — это чаще всего пластинка из стекла или пластика (иногда используют и другие материалы, например кремний). В этом смысле чипы биологические близки к чипам электронным, которые и базируются на кремниевых пластинах. Это организованное размещение занимает на платформе очень небольшой участок размером от почтовой марки до визитной карточки, поэтому в названии биочипов присутствует слово micro. Микроскопический размер биочипа позволяет размещать на небольшой площади огромное количество разных молекул ДНК и считывать с этой площади информация с помощью флуоресцентного микроскопа или специального лазерного устройства для чтения.

Биочип - это революционное достижение биотехнологии последних лет. Необычное устройство позволяет за короткое время определять несколько тысяч аллергенов, онкогенов, различных биологически активных веществ, и даже генетических дефектов. Технология белковых биочипов, заменяющих целые иммунологические лаборатории, дает возможность в тысячи и десятки тысяч раз увеличить производительность большинства диагностических методов и резко снизить себестоимость анализов.

За последние десятилетия был накоплен огромный объем знаний о молекулярных основах биохимических процессов в живых организмах. Это дало возможности не только точно диагностировать то или иное заболевание, но и оценить вероятность его возникновения еще до проявления у пациента клинических симптомов, а также подобрать эффективную терапию. Подавляющую часть такой информации получают с помощью лабораторной диагностики, на которую в мире ежегодно расходуется свыше 100 млрд долларов.

Большинство важнейших современных методов молекулярной диагностики основано на анализе данных, полученных при исследовании структуры геномов человека и микроорганизмов. В первую очередь речь идет о полимеразной цепной реакции (ПЦР). Обычно ДНК содержится в образцах в минимальных количествах, однако с помощью ПЦР можно в миллионы раз «размножить» в исследуемой пробе биоматериала определенные фрагменты этих макромолекул. «Мишенями» могут служить бактериальные или вирусные гены, генетические маркеры раковых опухолей и т. п. С помощью этого метода можно определить наличие, к примеру, возбудителя болезни, даже если в пробе присутствует всего несколько молекул его ДНК.

В биочипе ячейки с иммобилизованными зондами располагаются упорядоченными рядами, причем каждая ячейка содержит уникальный зонд. В зависимости от типа биочипа диаметр ячеек варьирует от 50 до 300 мкм, а их число зависит от сложности анализируемой мишени(ей) и задач эксперимента и составляет от нескольких десятков до нескольких тысяч. Молекулы исследуемого образца помечают флуоресцентой меткой, поэтому при облучении светом определенной длины волны ячейки, где произошло связывание зондов с молекулами-мишенями, будут светиться (две крайние ячейки)

В 2011 г. Национальная ассоциация фтизиатров России наградила ИМБ РАН кубком и дипломом «Лучший инновационный проект» за разработку молекулярно-генетической технологии биологических микрочипов и создание тест-системы для диагностики туберкулеза на ее основе. Согласно расчетам, выполненным ФГУ «Центральный НИИ организации и информатизации здравоохранения», «…экономия бюджетных средств при внедрении технологии биочипов для диагностики туберкулеза и определения лекарственной чувствительности возбудителя составляет не менее 70 рублей на каждый вложенный рубль» (Министерство здравоохранения и социального развития РФ, 2009)

Способы изготовления биочипов тоже бывают разными. Одна из крупнейших фирм по производству биочипов — Affymetrix — изготовляет биочипы таким же способом, каким изготовляют электронные чипы (и расположена эта фирма в Силиконовой долине, в Калифорнии). Чипы Affymetrix наращиваются прямо из стеклянной пластинки методом фотолитографии с использованием специальных микромасок. Применение отработанных методов электронной промышленности позволило добиться впечатляющих результатов. На одном таком чипе расположены десятки (а иногда и сотни) тысяч пятен размером в несколько микрон. Каждое пятно — это один уникальный фрагмент ДНК длиной в десятки нуклеотидов.

Изготовленный таким образом биочип в дальнейшем гибридизуют с молекулами ДНК, мечеными красителем. Сравнивают, например, ДНК, выделенную из здоровых клеток, и ДНК, выделенную из раковых клеток. Часто сравнивают ДНК, выделенную из разных больных. После гибридизации на биочипе возникают причудливые узоры. Эти узоры бывают разными у нормальных и у раковых клеток или сильно различаются при различных видах лейкозов. Излечимые виды лейкозов дают одни узоры (паттерны), неизлечимые дают совсем другие паттерны. На рисунке 1 можно видеть, как окрашенная ДНК от разных больных образует различные паттерны на биочипе. Болезнь одна и таже, паттерны — разные. По виду паттернов можно с большой вероятностью предсказать течение болезни на самой ранней ее стадии. В данном случае при паттерне типа 1 верятность метастаз равна нулю, при паттерне типа 2 — уже 29%, при паттернах типа 3 и 4 соответственно 75% и 77%.

 

Биочипы изготавливают не только методом фотолитографии. Другой подход — это когда олигонуклеотиды (относительно короткие фрагменты однонитевой ДНК) синтезируют отдельно, а затем уже пришивают к биочипу. Чипы такого типа изготавливают в разных фирмах, в частности, в Москве, в Институте молекулярной биологии. Биочипы, изготовленные в ИМБ, позволяют различать у больных туберкулезом штаммы, отличные от штаммов устойчивых к антибиотикам. Проблема состоит в том, что у некоторых больных бактерии туберкулеза имеют устойчивость к антибиотику рифампицину и антибиотик не помогает при лечении болезни. У большей части больных бактерии обычные (т.н. дикие штаммы бактерий) и антибиотик помогает. Необходимо знать устойчивость бактерий к антибиотику в самом начале лечения. Если врачи определят устойчивость бактерий через 2–3месяца после начала лечения, то легкие больного будут уже изрядно повреждены. Традиционные методы определения устойчивости бактерий туберкулеза могут отнять несколько недель. Биочипы позволяют решить эту задачу за 1–2дня. На рисунке 2 видны различные узоры паттерны гибридизации на российском биочипе двух штаммов туберкулеза: дикого и устойчивого к рифампицину.

На рисунке представлены гибридизационные картины (A, B) и соответствующие им диаграммы интенсивности флуоресцентных сигналов (C, D). A и C — прогибридизована последовательность дикого типа, B и D — последовательность содержит мутацию, приводящую к замене His526>Tyr (показана стрелкой).

Теперь приведем пример новейших специальных разработок в области биочипов. Специалисты из Нортвестернского университета в США разработали для американской армии биочип, обладающий совершенно неожиданными свойствами. Если на этот биочип попадает ДНК от патогенных микробов, то фрагменты ДНК зондов с прикрепленными к ним микроскопическими частицами золота выстраиваются в ряд. Между электродами идет ток и биочип сигнализирует об угрозе. Схема такого биочипа приведена на рисунке. Специальный биочип сигнализирует о наличии бактериальной угрозы после того, как золотые микрочастицы замыкают два электрода.

Сейчас также разрабатывают белковые микрочипы. Но это уже отрасль большой новой науки — протеомики.

Биочипы сегодня — это быстро развивающийся рынок, где работают десятки фирм. Биочипы будут составлять основу биомедицины 21 века.

 

Биохимические микрочипы

Биохимические микрочипы, технологии производства и внедрения которых активно развиваются в России и за рубежом, являются сильнейшими из существующих инструментов для выявления и идентификации биологических материалов. В основе применения микрочипов лежит принцип быстрого определения взаимодействий тех или иных лигандов со множеством различных зондов одновременно. Собственно биологические микрочипы представляют собой ту или иную твердую подложку, на которой нанесены или определенные фрагменты нуклеиновых кислот, или белки, или углеводы, или какие-либо иные молекулы-зонды, способные быть узнанными или проявлять биологическую активность. Количество различных зондов на подложке может достигать сотен тысяч, причем чипы каждого типа строго идентичны и при существующих технологиях могут быть реплицированы в сотнях тысяч и миллионах копий нанесенных на подложку.

К главным причинам широкого распространения биочиповых исследований относят высокую чувствительность, специфичность и воспроизводимость, простоту процедуры выполнения, возможность одновременного анализа множества параметров и относительно невысокую стоимость работ. Эти же причины заставляют рассматривать биочипы как перспективный инструмент в различных областях народного хозяйства. Биочипы применяются для обнаружения бактериальных и вирусных контаминаций в продуктах питания, косметике и окружающей среде, выявления генно-модифицированных организмов в пищевых продуктах, диагностики и прогнозирования различных заболеваний, детекции особо опасных инфекционных агентов в анти-биотеррористических целях и др.

 

ДНК-микрочипы

ДНК–чипы представляют собой уникальный аналитический инструмент, позволяющий определять наличие в анализируемом образце (как правило, биологического происхождения) заданных последовательностей ДНК (т.н. гибридизационный анализ). Проведение анализа с помощью ДНК–чипов обходится в несколько раз дешевле, чем при использовании альтернативных технологий (электрофорез, ПЦР в реальном времени) и допускает, при наличии детектора несложной конструкции, работу вне лаборатории.

Впервые ДНК–чипы были использованы в исследованиях в конце 80-х годов прошлого века. В основе этого теперь уже широко распространенного метода, позволяющего одновременно анализировать экспрессию множества генов, лежит принцип узнавания мРНК-овых или кДНК-овых мишеней посредством их гибридизации с иммобилизованными на микрочипе одноцепочечными фрагментами ДНК.

ДНК–чип представляет собой твердую подложку, на которой иммобилизованы (как правило, ковалентно) однонитевые фрагменты ДНК разной длины: короткие – 15-25 нуклеотидов, длинные – 25-60 нуклеотидов и кДНК фрагменты – от 100 до 3000 нуклеотидов. В качестве материала подложки используют стекло, кремний, различные полимеры, гидрогели (например, на основе полиакриламида) и даже золото. Наиболее распространенные подложки – из стекла.

 

Белковые и пептидные чипы

Для анализа продуктов трансляции генов используют чипы, построенных на основе полипептидов. Большинство лекарственных мишеней являются белками, следовательно, белковые и пептидные чипы могут быть полезны для поиска новых лекарств. Белковые микрочипы могут оказаться чрезвычайно полезными в медицине в качестве миниатюрных аналитических систем для определения иммунного статуса организма, выявления аллергической сенсибилизации и идентификации специфических аллергенов. Микрочипы, представляющие собрание основных антигенов главных патогенных организмов (бактерии, грибы и вирусы), позволяют анализировать образцы крови на присутствие одновременно сотен, тысяч антител и быстро идентифицировать инфекции. Большое значение в развитии белковых микрочипов имеют способы регистрации сигналов. К ним относятся: самый первый из известных методов – РИА (радиоиммунологический анализ), применяющий радиоактивную метку, иммуноанализ с использованием флуоресцентных меток – ФИА и иммуноферментный анализ (ИФА), в котором меткой является молекула фермента, ковалентно связанная с молекулой антитела. В качестве меток в ИФА выбираются высокоактивные стабильные ферменты (щелочная фосфатаза, пероксидаза и др.). Преимуществом ИФА является возможность многократного усиления сигнала. В последние годы разработаны чувствительные системы субстратов, дающих нерастворимые флуоресцирующие продукты, например, ELF-97. Очевидно, что процесс изготовления белкового микрочипа должен включать процедуру закрепления, иммобилизации на микрочипе. Выбор метода определяется многими параметрами - природой исходного субстрата, последующей областью применения микрочипа и т.д. Белковые микрочипы активно применяются, прежде всего, для анализа всех известных (и доступных) биологических жидкостей, включая сыворотку/плазму крови, мочу, цереброспинальную жидкость, слюну, слезную жидкость, амниотическую жидкость, и др.

Углеводные микрочипы

Многие природные биомолекулы (белки, липиды) модифицированы сахарными остатками. Часто биологические процессы включают связывание сахаров с рецепторами, и микрочипы могут стать важным инструментом в исследовании таких взаимодействий. Гликолипиды, нанесенные на нитроцеллюлозу или поливинилиденфторид, представляют пример углеводных микрочипов. Эти гликолипиды взаимодействуют с белками с известной углевод-связывающей специфичностью для подтверждения предсказанных олигосахарид-белковых взаимодействий. Связывание углеводов с мембранами регистрируют с помощью флуоресцентно меченых гликолипидов. Углеводный состав связавшегося компонента определяют in situ масс-спектрометрически. Важно отметить, что олигосахариды, связанные с липидом, могут иметь различное происхождение, например, гликопротеины, протеогликаны, гликолипиды, целые клетки и синтетические олигосахариды. Таким образом, по взаимодействию олигосахаридов, последовательность которых известна, с мембраной могут быть идентифицированы конкретные связанные с сахарами белковые мотивы. И, наоборот, путем связывания неизвестных олигосахаридов с мембраной можно отобрать белки с известной структурой, чтобы определить, с какими олигосахаридами они связаны.

Тканевые микрочипы

Данные по анализу экспрессии генов только начинают давать нам важную информацию о биологической функции генов, их потенциальном клиническом влиянии или их пригодности в качестве мишени для лекарства. В то же время традиционный гистологический анализ образцов ткани требует больших затрат времени: ткани выдерживают в формалине, помещают в парафин, делают срезы и только затем красят и проводят микроскопический анализ на индивидуальных стеклах. В 1998 году для такого анализа впервые были изготовлены тканевые микрочипы посредством нанесения на одну подложку многих образцов ткани.

Изготовление микрочипа включает объединение до тысячи иголочных биопсий, взятых из помещенных в парафин образцов ткани, в парафиновом блоке с определенными координатами. Из этого блока делается до 300 срезов, которые переносятся на стекло для прокрашивания и анализа. Таким образом, из одного блока может быть произведено до 300 тысяч анализов. При этом такой способ вызывает минимальное повреждение ткани.

Тканевые микрочипы довольно активно используются для поиска маркеров, ассоциированных с теми или иными заболеваниями, в первую очередь, с онкологическими. Показаны примеры успешного применения тканевых чипов для анализа аутоиммунных заболеваний, сердечной недостаточности, диабета и нейродегенеративных патологий



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-01-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: